A clustering variational Bayesian Kalman filter with heavy-tailed measurement noise

被引:0
作者
Wang, Gang [1 ]
Zhang, Zuxuan [1 ]
Yang, Haihao [1 ]
Yao, Zhoubin [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
关键词
Kalman filter; Variational Bayesian methods; Heavy-tailed noise; Bayesian Information Criterion (BIC);
D O I
10.1016/j.sigpro.2025.110010
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In order to solve the problem of unknown measurement noise distribution and variance in the Kalman filtering, the paper proposes a clustering variational Bayesian framework, which includes two parts: (1) a real-time clarifying method is to divide unknown heavy-tailed measurement noise into two Gaussian distributions with different parameters (means and variances), (2) an effective real-time method based Variational Bayesian (VB) is to estimate the parameters of the two Gaussian distributions. Simulations demonstrate that the proposed clustering variational Bayesian Kalman filter outperforms the existing Kalman filters in terms of both estimation accuracy and computational complexity.
引用
收藏
页数:8
相关论文
共 29 条
[1]  
[Anonymous], 2003, Ph.D. Thesis
[2]  
Athey T.L., 2019, AutoGMM: Automatic Gaussian mixture modeling in python
[3]  
Bar-Shalom Y., 2004, Estimation with applications to tracking and navigation: Theory, algorithms and software, P89
[4]  
Brown R. G., 1972, Navigation, V19, P355
[5]   Minimum Error Entropy Kalman Filter [J].
Chen, Badong ;
Dang, Lujuan ;
Gu, Yuantao ;
Zheng, Nanning ;
Principe, Jose C. .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (09) :5819-5829
[6]   Maximum correntropy Kalman filter [J].
Chen, Badong ;
Liu, Xi ;
Zhao, Haiquan ;
Principe, Jose C. .
AUTOMATICA, 2017, 76 :70-77
[7]   A Background-Impulse Kalman Filter With Non-Gaussian Measurement Noises [J].
Fan, Xuxiang ;
Wang, Gang ;
Han, Jiachen ;
Wang, Yinghui .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (04) :2434-2443
[8]   A Gaussian Mixture Unscented Rauch-Tung-Striebel Smoothing Framework for Trajectory Reconstruction [J].
He, Jiacheng ;
Peng, Bei ;
Feng, Zhenyu ;
Zhong, Shan ;
He, Bo ;
Wang, Gang .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (05) :7481-7491
[9]   Generalized minimum error entropy for robust learning [J].
He, Jiacheng ;
Wang, Gang ;
Cao, Kui ;
Diao, He ;
Wang, Guotai ;
Peng, Bei .
PATTERN RECOGNITION, 2023, 135
[10]  
Huang Y., 2020, IEEE Trans. Autom. Control PP, P1