Non-invasive PNET grading using CT radiomics and machine learning

被引:0
作者
Salahshour, Faeze [1 ,2 ]
Taherzadeh, Mahsa [3 ]
Hajianfar, Ghasem [4 ]
Bayat, Gholamreza [5 ]
Ardalan, Farid Azmoudeh [6 ]
Bagheri, Soroush [7 ]
Esmailzadeh, Arman [8 ]
Kahe, Majid [9 ]
Shayesteh, Sajad P. [5 ]
机构
[1] Univ Tehran Med Sci, Adv Diagnost & Intervent Radiol Res Ctr ADIR, Dept Radiol, Imam Khomeini Hosp Complex, Tehran, Iran
[2] Dept Radiol, Sch Med, Tehran, Iran
[3] Univ Tehran Med Sci, Imam Khomeini Hosp Complex, Dept Radiol, Tehran, Iran
[4] Iran Univ Med Sci, Rajaie Cardiovasc Med & Res Ctr, Tehran, Iran
[5] Alborz Univ Med Sci, Sch Med, Dept Physiol Pharmacol & Med Phys, Karaj 3149779453, Iran
[6] Univ Tehran Med Sci, Imam Khomeini Hosp Complex, Liver Transplantat Res Ctr, Sch Med,Dept Pathol, Tehran, Iran
[7] Kashan Univ Med Sci, Dept Med Phys, Kashan, Iran
[8] Iran Univ Med Sci, Sch Med, Dept Med Phys, Tehran, Iran
[9] Alborz Univ Med Sci, Imam Ali Hosp, Dept Radiat Oncol, Sch Med,Dept Internal Med, Karaj, Iran
关键词
Pancreatic neuroendocrine tumors; radiomics; CT; pathological grading; machine learning;
D O I
10.1080/21681163.2025.2500429
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Pancreatic cancer is a major cause of cancer-related fatalities globally, with a poor prognosis. Machine learning-based medical image analysis has emerged as a promising approach for improving clinical decision-making. The purpose is to determine the most effective machine learning method and phase of CT scan to provide clinicians with an efficient tool for accurately identifying pathological grades of pancreatic neuroendocrine tumours (PNET). This will be achieved by analysing contrast-enhanced computed tomography scans of both arterial and portal phases. An investigation was conducted on a cohort of 100 patients diagnosed with pancreatic neuroendocrine tumours. Radiomic features were extracted using Pyradiomics. These features were subsequently utilised in different machine learning classifiers. The classification model's performance was assessed using sensitivity, specificity, area under the curve (AUC) and accuracy metrics. Our analysis demonstrates that combining CT-based radiomic features with a machine-learning approach can identify the pathological grades of pancreatic neuroendocrine tumours. the combination of Portal_RFE and K-Nearest Neighbour (KNN) demonstrated the highest predictive performance with an AUC of 0.76 and 0.69 in training and validation models, respectively. The use of CT radiomic features and machine learning effectively determines PNET pathological grades, aiding in classifying patients for clinical decisions.
引用
收藏
页数:9
相关论文
共 42 条
[1]  
Abro AA., 2021, USJICT, V5, P63
[2]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[3]   Evaluating Machine Learning-Based Classification Approaches: A New Method for Comparing Classifiers Applied to Human Driver Prediction Intentions [J].
Ameyaw, Daniel Adofo ;
Deng, Qi ;
Soeffker, Dirk .
IEEE ACCESS, 2022, 10 :62429-62439
[4]   Beyond imaging: The promise of radiomics [J].
Avanzo, Michele ;
Stancanello, Joseph ;
El Naqa, Issam .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2017, 38 :122-139
[5]   Prediction of Pancreatic Neuroendocrine Tumor Grade Based on CT Features and Texture Analysis [J].
Canellas, Rodrigo ;
Burk, Kristine S. ;
Parakh, Anushri ;
Sahani, Dushyant V. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2018, 210 (02) :341-346
[6]   Radiomics in Glioblastoma: Current Status and Challenges Facing Clinical Implementation [J].
Chaddad, Ahmad ;
Kucharczyk, Michael Jonathan ;
Daniel, Paul ;
Sabri, Siham ;
Jean-Claude, Bertrand J. ;
Niazi, Tamim ;
Abdulkarim, Bassam .
FRONTIERS IN ONCOLOGY, 2019, 9
[7]   Machine Learning Methods Based on CT Features Differentiate G1/G2 From G3 Pancreatic Neuroendocrine Tumors [J].
Chen, Hai-Yan ;
Pan, Yao ;
Chen, Jie-Yu ;
Chen, Jia ;
Liu, Lu-Lu ;
Yang, Yong-Bo ;
Li, Kai ;
Ma, Qian ;
Shi, Lei ;
Yu, Ri-Sheng ;
Shao, Guo-Liang .
ACADEMIC RADIOLOGY, 2024, 31 (05) :1898-1905
[8]   Pancreatic neuroendocrine tumor: prediction of the tumor grade using CT findings and computerized texture analysis [J].
Choi, Tae Won ;
Kim, Jung Hoon ;
Yu, Mi Hye ;
Park, Sang Joon ;
Han, Joon Koo .
ACTA RADIOLOGICA, 2018, 59 (04) :383-392
[9]   Comparison between EUS-guided fine-needle aspiration cytology and EUS-guided fine-needle biopsy histology for the evaluation of pancreatic neuroendocrine tumors [J].
Crino, Stefano Francesco ;
Ammendola, Serena ;
Meneghetti, Anna ;
Bernardoni, Laura ;
Bellocchi, Maria Cristina Conti ;
Gabbrielli, Armando ;
Landoni, Luca ;
Paiella, Salvatore ;
Pin, Federico ;
Parisi, Alice ;
Mastrosimini, Maria Gaia ;
Amodio, Antonio ;
Frulloni, Luca ;
Facciorusso, Antonio ;
Larghi, Alberto ;
Manfrin, Erminia .
PANCREATOLOGY, 2021, 21 (02) :443-450
[10]   Radiomics in stratification of pancreatic cystic lesions: Machine learning in action [J].
Dalal, Vipin ;
Carmicheal, Joseph ;
Dhaliwal, Amaninder ;
Jain, Maneesh ;
Kaur, Sukhwinder ;
Batra, Surinder K. .
CANCER LETTERS, 2020, 469 :228-237