Chaos and proportional integral derivative (PID) control on cancer dynamics with fractal fractional operator

被引:1
作者
Farman, Muhammad [1 ,2 ,3 ]
Nisar, Kottakkaran Sooppy [4 ]
Jamil, Khadija [5 ]
Akgul, Ali [6 ,7 ,8 ,9 ,13 ]
Sambas, Aceng [10 ]
Bayram, Mustafa
Habib, Mustafa [11 ]
Hassani, Murad Khan [12 ]
机构
[1] Near East Univ, Fac Arts & Sci, Dept Math, CY-99138 Nicosia, Cyprus
[2] Univ Sultan Zainal Abidin, Fac Informat & Comp, Campus Besut, Terengganu 22200, Malaysia
[3] Khazar Univ, Res Ctr Appl Math, Baku 1096, Azerbaijan
[4] Prince Sattam Bin Abdulaziz Univ, Coll Sci & Humanities Alkharj, Dept Math, Alkharj 11942, Saudi Arabia
[5] Khwaja Fareed Univ Engn & Informat Technol, Inst Math, Rahim Yar Khan, Pakistan
[6] SIMATS, Saveetha Sch Engn, Dept Elect & Commun Engn, Chennai, Tamil Nadu, India
[7] Siirt Univ, Art & Sci Fac, Dept Math, TR-56100 Siirt, Turkiye
[8] Biruni Univ, Dept Comp Engn, TR-34010 Istanbul, Turkiye
[9] Near East Univ, Math Res Ctr, Dept Math, Near East Blvd,Mersin 10, TR-99138 Nicosia, Turkiye
[10] Univ Muhammadiyah Tasikmalaya, Dept Mech Engn, Tamansari Gobras 46196, Tasikmalaya, Indonesia
[11] Univ Engn & Technol, Dept Math, Lahore, Pakistan
[12] Ghazni Univ, Dept Math, Ghazni, Afghanistan
[13] Appl Sci Private Univ, Appl Sci Res Ctr, Amman 11937, Jordan
关键词
Cancer model; Chaos control; PID control; Mittag-Leffler kernel; ONCOLYTIC VIRUSES; NEUROBLASTOMA; DELIVERY; MODELS; CELLS;
D O I
10.1016/j.rineng.2025.105052
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study presents a cancer dynamics model incorporating a fractal-fractional operator with a Mittag-Leffler kernel to capture complex interactions among cancer cells, tumor suppressor cells, immune cells, and oncolytic viruses. The model aims to enhance understanding of tumor-immune dynamics and improve treatment strategies. The existence and uniqueness of the solution are established using fixed point theory under the Lipschitz condition. Lyapunov stability of the system is also analyzed in the context of the fractalfractional operator. To address chaotic behavior in cancer progression, chaos and Proportional-Integral-Derivative (PID) control techniques are implemented. These control methods effectively stabilize the system and regulate treatment administration. Numerical simulations illustrate the influence of fractional-order derivatives on tumor suppression and immune response, confirming the model's effectiveness in reflecting real-world cancer dynamics.
引用
收藏
页数:20
相关论文
共 42 条
[1]  
Akguel A, 2025, Arxiv, DOI arXiv:2504.06582
[2]   Fractal Fractional Derivative Models for Simulating Chemical Degradation in a Bioreactor [J].
Akgul, Ali ;
Conejero, J. Alberto .
AXIOMS, 2024, 13 (03)
[5]   Optimal Combinations of Chemotherapy and Radiotherapy in Low-Grade Gliomas: A Mathematical Approach [J].
Ayala-Hernandez, Luis E. ;
Gallegos, Armando ;
Schucht, Philippe ;
Murek, Michael ;
Perez-Romasanta, Luis ;
Belmonte-Beitia, Juan ;
Perez-Garcia, Victor M. .
JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (10)
[6]   Analysis and dynamical structure of glucose insulin glucagon system with Mittage-Leffler kernel for type I diabetes mellitus [J].
Batool, Maryam ;
Farman, Muhammad ;
Ghaffari, Abdul Sattar ;
Nisar, Kottakkaran Sooppy ;
Munjam, Shankar Rao .
SCIENTIFIC REPORTS, 2024, 14 (01)
[7]   Neuroblastoma: Biological insights into a clinical enigma [J].
Brodeur, GM .
NATURE REVIEWS CANCER, 2003, 3 (03) :203-216
[8]   Modelling the role of flux density and coating on nanoparticle internalization by tumor cells under centrifugation [J].
Calvo, Gabriel F. ;
Cortes-Llanos, Belen ;
Belmonte-Beitia, Juan ;
Salas, Gorka ;
Ayuso-Sacido, Angel .
APPLIED MATHEMATICAL MODELLING, 2020, 78 :98-116
[9]   Mathematical Models for Immunology: Current State of the Art and Future Research Directions [J].
Eftimie, Raluca ;
Gillard, Joseph J. ;
Cantrell, Doreen A. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2016, 78 (10) :2091-2134
[10]  
Farman M., 2025, Part. Diff. Equ. Appl. Math, V13, DOI [10.1016/j.padiff.2024.101047, DOI 10.1016/J.PADIFF.2024.101047]