Maximizing Entanglement Routing Rate in Quantum Networks: Approximation Algorithms

被引:0
作者
Nguyen, Dung H. P. [1 ,2 ]
Hunt, Ethan [3 ]
Horton, Dillon J. [3 ]
Nguyen, Tu N. [3 ]
Liu, Bing-Hong [1 ]
机构
[1] Natl Kaohsiung Univ Sci & Technol, Dept Elect Engn, Kaohsiung 80778, Taiwan
[2] Pham Dong Univ, Fac Engn & Technol, Quang Ngai 570000, Vietnam
[3] Kennesaw State Univ, Dept Comp Sci, Marietta, GA 30060 USA
来源
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING | 2025年 / 12卷 / 03期
关键词
Routing; Quantum entanglement; Qubit; Approximation algorithms; Quantum mechanics; Repeaters; Quantum repeaters; Network topology; Topology; Training; Entanglement; quantum repeater; quantum networks; KEY DISTRIBUTION; REPEATERS; CAPACITY; STATE;
D O I
10.1109/TNSE.2025.3542332
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
There will be a fast-paced shift from conventional network systems to novel quantum networks that are supported by the quantum entanglement and teleportation, key technologies of the quantum era, to enable secured data transmissions in the next-generation of the Internet. Despite this prospect, migration to quantum networks cannot happen all at once, especially when it comes to quantum routing. In this paper, we focus on the maximizing entanglement routing rate (MERR) problem, which aims to determine entangled routing paths for the maximum number of demands in the quantum network while meeting the network's fidelity. To tackle this problem, we first formulate the MERR problem using an integer linear programming (ILP) model. We then leverage the method of linear programming relaxation to devise two efficient algorithms, including the half-based rounding algorithm (HBRA) and the randomized rounding algorithm (RRA) with a provable approximation ratio for the objective function. Furthermore, to address the challenge of the combinatorial optimization problem in big scale networks, we also propose the path-length-based approach (PLBA) to solve the MERR problem. Finally, we evaluate the performance of our algorithms and show up the success of maximizing the entanglement routing rate.
引用
收藏
页码:1939 / 1952
页数:14
相关论文
共 49 条
[1]   One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment [J].
Abobeih, M. H. ;
Cramer, J. ;
Bakker, M. A. ;
Kalb, N. ;
Markham, M. ;
Twitchen, D. J. ;
Taminiau, T. H. .
NATURE COMMUNICATIONS, 2018, 9
[2]   Efficient Routing for Quantum Key Distribution Networks [J].
Amer, Omar ;
Krawec, Walter O. ;
Wang, Bing .
IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE20), 2020, :137-147
[3]  
[Anonymous], About us
[4]  
Barakabitze AA, 2018, IEEE ICC
[5]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[6]   Quantum cryptography: Public key distribution and coin tossing [J].
Bennett, Charles H. ;
Brassard, Gilles .
THEORETICAL COMPUTER SCIENCE, 2014, 560 :7-11
[7]   Quantum repeaters:: The role of imperfect local operations in quantum communication [J].
Briegel, HJ ;
Dür, W ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (26) :5932-5935
[8]   Quantum Internet: Networking Challenges in Distributed Quantum Computing [J].
Cacciapuoti, Angela Sara ;
Caleffi, Marcello ;
Tafuri, Francesco ;
Cataliotti, Francesco Saverio ;
Gherardini, Stefano ;
Bianchi, Giuseppe .
IEEE NETWORK, 2020, 34 (01) :137-143
[9]   Optimal Routing for Quantum Networks [J].
Caleffi, Marcello .
IEEE ACCESS, 2017, 5 :22299-22312
[10]   Entanglement Distribution in a Quantum Network: A Multicommodity Flow-Based Approach [J].
Chakraborty, Kaushik ;
Elkouss, David ;
Rijsman, Bruno ;
Wehner, Stephanie .
IEEE TRANSACTIONS ON QUANTUM ENGINEERING, 2020, 1