Proton Conduction in Zirconium-Based Metal-Organic Frameworks for Advanced Applications

被引:0
作者
Zhao, Kai-Xin [1 ,2 ]
Zhang, Guo-Qin [1 ,2 ]
Wu, Xin-Ru [1 ,2 ]
Luo, Hong-Bin [1 ,2 ]
Han, Zhi-Xing [1 ,2 ]
Liu, Yangyang [3 ]
Ren, Xiao-Ming [1 ,2 ,4 ]
机构
[1] Nanjing Tech Univ, State Key Lab Mat Oriented Chem Engn, Nanjing 211816, Peoples R China
[2] Nanjing Tech Univ, Coll Chem & Mol Engn, Nanjing 211816, Peoples R China
[3] Calif State Univ Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90032 USA
[4] Nanjing Univ, State Key Lab Coordinat Chem, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Zr-MOFs; proton conduction; proton-exchangemembrane; proton pumps; chemical sensor; FORMIC-ACID; SUPERPROTONIC CONDUCTIVITY; ACETIC-ACIDS; MEMBRANE; HYDROGEN; PERFORMANCE; TRANSPORT; IMIDAZOLE; METHANOL; NAFION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Zirconium-based metal-organic frameworks (Zr-MOFs) have emerged as a promising class of crystalline porous materials, attracting significant interest in the field of proton conduction due to their exceptional chemical stability, structural flexibility, and functional tunability. Notably, proton-conducting Zr-MOFs show immense potential for diverse advanced technological applications. In this Spotlight on Applications paper, we provide an overview of proton-conducting Zr-MOFs and spotlight the recent progress of their utilization as proton exchange membranes in proton exchange membrane fuel cells (PEMFCs), light-responsive systems for proton pumps, and chemical sensors for formic acid detection. Furthermore, we also discussed the challenges, future prospects, and opportunities for promoting the application of proton-conducting Zr-MOFs.
引用
收藏
页码:3164 / 3175
页数:12
相关论文
共 146 条
[1]   Solid state protonic conductors, present main applications and future prospects [J].
Alberti, G ;
Casciola, M .
SOLID STATE IONICS, 2001, 145 (1-4) :3-16
[2]   Long-Range Proton Conduction across Free-Standing Serum Albumin Mats [J].
Amdursky, Nadav ;
Wang, Xuhua ;
Meredith, Paul ;
Bradley, Donal D. C. ;
Stevens, Molly M. .
ADVANCED MATERIALS, 2016, 28 (14) :2692-2698
[3]   Effect of Elevated Temperatures on the States of Water and Their Correlation with the Proton Conductivity of Nafion [J].
Barique, Mohammad A. ;
Tsuchida, Eiji ;
Ohira, Akihiro ;
Tashiro, Kohji .
ACS OMEGA, 2018, 3 (01) :349-360
[4]  
Benhabbour SR, 2005, CHEM MATER, V17, P1605, DOI [10.1021/cm048301l, 10.1021/cm0483011]
[5]   Switching in Metal-Organic Frameworks [J].
Bigdeli, Fahime ;
Lollar, Christina T. ;
Morsali, Ali ;
Zhou, Hong-Cai .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (12) :4652-4669
[6]   Metal Organic Frameworks as Drug Targeting Delivery Vehicles in the Treatment of Cancer [J].
Cai, Mengru ;
Chen, Gongsen ;
Qin, Liuying ;
Qu, Changhai ;
Dong, Xiaoxv ;
Ni, Jian ;
Yin, Xingbin .
PHARMACEUTICS, 2020, 12 (03)
[7]   Formic acid gas sensor based on coreless optical fiber coated by molybdenum disulfide nanosheet [J].
Chen, Gaoliang ;
Li, Jin ;
Meng, Fanli .
JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 896
[8]   Porous coordination polymer-based composite membranes for high-temperature polymer exchange membrane fuel cells [J].
Chen, Guoliang ;
Ge, Lei ;
Lee, Joong Hee ;
Zhu, Zhonghua ;
Wang, Hao .
MATTER, 2022, 5 (07) :2031-2053
[9]   High temperature ionic conduction mediated by ionic liquid incorporated within the metal-organic framework UiO-67(Zr) [J].
Chen, Li-Hong ;
Wu, Bin-Bin ;
Zhao, Hai-Xia ;
Long, La-Sheng ;
Zheng, Lan-Sun .
INORGANIC CHEMISTRY COMMUNICATIONS, 2017, 81 :1-4
[10]   Proton conductive Zr-based MOFs [J].
Chen, Xin ;
Li, Gang .
INORGANIC CHEMISTRY FRONTIERS, 2020, 7 (19) :3765-3784