Enhanced linearity of AlGaN/GaN HEMTs via dual-gate configuration for RF amplifier applications

被引:0
作者
Guo, Haowen [1 ]
Ye, Wenbo [1 ]
Zhou, Junmin [1 ]
Gu, Yitian [1 ,2 ,3 ]
Gao, Han [1 ]
Zou, Xinbo [1 ]
机构
[1] ShanghaiTech Univ, Sch Informat Sci & Technol SIST, Shanghai, Peoples R China
[2] Univ Chinese Acad Sci, Sch Microelect, Beijing, Peoples R China
[3] Shanghai Inst Microsyst & Informat Technol, Shanghai, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
AlGaN/GaN HEMT; Dual gate; Output-referred third-order intercept point (OIP3); RF linearity; Third-order intermodulation (IM3); POWER-AMPLIFIER; GAN HEMTS; IMPROVEMENT; CMOS; SI;
D O I
10.1016/j.sse.2025.109127
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study investigates RF linearity performance of a GaN dual-gate HEMT, focusing on its two-tone intermodulation characteristics. The dual-gate configuration is implemented to enhance linearity performance by reducing feedback capacitance to 41.8 fF/mm, achieving a reduction of 73 % when compared to conventional single-gate HEMTs. The dual-gate device showcases a small-signal gain of 23.5 dB at 2.1 GHz, which remains constant regardless of DC gate bias voltage V-B. Intermodulation distortion could be mitigated by increasing V-B, as evidenced by device's highest OIP3 of 30.1 dBm at V-B of 3 V and a drain voltage of 20 V. Additionally, the OIP3/P-DC reaches a peak value of 10.6 dB at V-DS of 5 V. A comparison between the dual-gate HEMT and a conventional single-gate device demonstrates a 3.7 dB gain increase of and a linearity improvement of 5.9 dB. These results highlight the advantageous power gain and high linearity of the dual-gate structure, indicating its considerable potential for RF amplifier applications that require minimum signal distortion.
引用
收藏
页数:7
相关论文
共 32 条
[1]  
Ando Y, 2005, INT EL DEVICES MEET, P585
[2]   Linearity Characterization of Enhancement- Mode p-GaN Gate Radio-Frequency HEMT [J].
Cheng, Yan ;
Zheng, Zheyang ;
Ng, Yat Hon ;
Chen, Kevin J. .
IEEE ELECTRON DEVICE LETTERS, 2023, 44 (11) :1813-1816
[3]   Intrinsically Linear Transistor for Millimeter-Wave Low Noise Amplifiers [J].
Choi, Woojin ;
Chen, Renjie ;
Levy, Cooper ;
Tanaka, Atsunori ;
Liu, Ren ;
Balasubramanian, Venkatesh ;
Asbeck, Peter M. ;
Dayeh, Shadi A. .
NANO LETTERS, 2020, 20 (04) :2812-2820
[4]   Cascode connected AlGaN/GaN HEMT's on SiC substrates [J].
Green, BM ;
Chu, KK ;
Smart, JA ;
Tilak, V ;
Kim, H ;
Shealy, JR ;
Eastman, LF .
IEEE MICROWAVE AND GUIDED WAVE LETTERS, 2000, 10 (08) :316-318
[5]   Output Phase and Amplitude Analysis of GaN-Based HEMT at Cryogenic Temperatures [J].
Guo, Haowen ;
Zhou, Junmin ;
Wang, Maojun ;
Zou, Xinbo .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2021, 31 (11) :1219-1222
[6]   Mechanism of Linearity Improvement in GaN HEMTs by Low Pressure Chemical Vapor Deposition-SiNx Passivation [J].
Jing, Guanjun ;
Wang, Xinhua ;
Huang, Sen ;
Jiang, Qimeng ;
Deng, Kexin ;
Wang, Yuhao ;
Li, Yankui ;
Fan, Jie ;
Wei, Ke ;
Liu, Xinyu .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (12) :6610-6615
[7]  
Joglekar Sameer, 2017, ENG TRANSCONDUCTANCE
[8]   A highly linear and efficient differential CMOS power amplifier with harmonic control [J].
Kang, Jongchan ;
Yoon, Jehyung ;
Min, Kyoungjoon ;
Yu, Daekyu ;
Nam, Joongjin ;
Yang, Youngoo ;
Kim, Bumman .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2006, 41 (06) :1314-1322
[9]   Linearity analysis of CMOS for RF application [J].
Kang, S ;
Choi, B ;
Kim, B .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2003, 51 (03) :972-977
[10]   An 8-W 250-MHz to 3-GHz Decade-Bandwidth Low-Noise GaN MMIC Feedback Amplifier With >+51-dBm OIP3 [J].
Kobayashi, Kevin W. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2012, 47 (10) :2316-2326