Multi-Scale Dynamic Sparse Token Multi-Instance Learning for Pathology Image Classification

被引:0
作者
Lei, Dajiang [1 ,2 ]
Zhang, Yuqi [1 ]
Wang, Haodong [1 ]
Xiong, Xiaomin [3 ,4 ]
Xu, Bo [3 ,4 ]
Wang, Guoyin [5 ]
机构
[1] Chongqing Univ Posts & Telecommun, Chongqing Key Lab Image Cognit, Chongqing 400065, Peoples R China
[2] Minist Educ, Key Lab Cyberspace Big Data Intelligent Secur, Chongqing 400065, Peoples R China
[3] Chongqing Univ, Sch Med, Chongqing 400044, Peoples R China
[4] Chongqing Univ Canc Hosp, Chongqing Key Lab Intelligent Oncol Breast Canc, Chongqing 400030, Peoples R China
[5] Chongqing Normal Univ, Natl Ctr Appl Math Chongqing, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-scale pathological image analysis; multiple instance learning; transformer; whole slide image; CANCER;
D O I
10.1109/JBHI.2024.3509213
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In many challenging breast cancer pathology images, the proportion of truly informative tumor regions is extremely limited. The disparity between the essential information required for clinical diagnosis (Tumor area less than 10$\%$) and the vast amount of data within Whole Slide Images (WSIs) makes it exceedingly difficult for pathologists to identify subtle lesions. To address the labor-intensive task imposed by this information gap, this paper proposes a dynamic sparse token based multi-instance learning framework. This framework incorporates a dynamic sparse layer into the transformer architecture, gradually adapting to selectively filter key instances beneficial for the task. Furthermore, to tackle complex scenarios in pathology image tasks, we introduce a weakly supervised cross-scale contrastive learning framework. This framework leverages pathology image features at different scales to perform contrastive learning at the bag-level representation to overcome existing challenges in multi-scale feature fusion in pathology image tasks. To validate the effectiveness and transferability of the model, we conducted various single-scale and multi-scale experiments across four cancer datasets and conducted interpretable analyses. Compared to other state-of-the-art methods, our classification model demonstrates superior performance across six evaluation metrics.
引用
收藏
页码:2744 / 2757
页数:14
相关论文
共 54 条
[1]   Breast Cancer Pathological Image Classification Based on the Multiscale CNN Squeeze Model [J].
Alqahtani, Yahya ;
Mandawkar, Umakant ;
Sharma, Aditi ;
Hasan, Mohammad Najmus Saquib ;
Kulkarni, Mrunalini Harish ;
Sugumar, R. .
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
[2]  
Ashman Kimberly, 2022, J Pathol Inform, V13, P100113, DOI 10.1016/j.jpi.2022.100113
[3]   Efficient subtyping of ovarian cancer histopathology whole slide images using active sampling in multiple instance learning [J].
Breen, Jack ;
Allen, Katie ;
Zucker, Kieran ;
Hall, Geoff ;
Orsi, Nicolas M. ;
Ravikumar, Nishant .
MEDICAL IMAGING 2023, 2023, 12471
[4]   FDTrans: Frequency Domain Transformer Model for predicting subtypes of lung cancer using multimodal data [J].
Cai, Meiling ;
Zhao, Lin ;
Hou, Guojie ;
Zhang, Yanan ;
Wu, Wei ;
Jia, Liye ;
Zhao, JuanJuan ;
Wang, Long ;
Qiang, Yan .
COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 158
[5]   Clinical-grade computational pathology using weakly supervised deep learning on whole slide images [J].
Campanella, Gabriele ;
Hanna, Matthew G. ;
Geneslaw, Luke ;
Miraflor, Allen ;
Silva, Vitor Werneck Krauss ;
Busam, Klaus J. ;
Brogi, Edi ;
Reuter, Victor E. ;
Klimstra, David S. ;
Fuchs, Thomas J. .
NATURE MEDICINE, 2019, 25 (08) :1301-+
[6]  
Chaitanya K., 2020, P ADV NEUR INF PROC, P12546
[7]   CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification [J].
Chen, Chun-Fu ;
Fan, Quanfu ;
Panda, Rameswar .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :347-356
[8]   GasHis-Transformer: A multi-scale visual transformer approach for gastric histopathological image detection [J].
Chen, Haoyuan ;
Li, Chen ;
Wang, Ge ;
Li, Xiaoyan ;
Rahaman, Md Mamunur ;
Sun, Hongzan ;
Hu, Weiming ;
Li, Yixin ;
Liu, Wanli ;
Sun, Changhao ;
Ai, Shiliang ;
Grzegorzek, Marcin .
PATTERN RECOGNITION, 2022, 130
[9]   Scaling Vision Transformers to Gigapixel Images via Hierarchical Self-Supervised Learning [J].
Chen, Richard J. ;
Chen, Chengkuan ;
Li, Yicong ;
Chen, Tiffany Y. ;
Trister, Andrew D. ;
Krishnan, Rahul G. ;
Mahmood, Faisal .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :16123-16134
[10]  
Chen T, 2020, PR MACH LEARN RES, V119