On the computational complexity of ordinal multi-objective unconstrained combinatorial optimization

被引:0
作者
Figueira, Jose Rui [1 ]
Klamroth, Kathrin [2 ]
Stiglmayr, Michael [2 ]
Santos, Julia Sudhoff [2 ]
机构
[1] Univ Lisbon, CEGIST, Inst Super Tecn, Lisbon, Portugal
[2] Univ Wuppertal, Sch Math & Nat Sci, Wuppertal, Germany
关键词
Ordinal optimization; Multi-objective unconstrained optimization; Combinatorial optimization; Complexity theory;
D O I
10.1016/j.orl.2025.107302
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Multi-objective unconstrained combinatorial optimization problems (MUCO) are in general hard to solve, i.e., the corresponding decision problem is NP-hard and the outcome set is intractable. In this paper we explore special cases of MUCO problems that are actually easy, i.e., solvable in polynomial time. More precisely, we show that MUCO problems with up to two ordinal objective functions plus one real-valued objective function are tractable, and that their complete nondominated set can be computed in polynomial time. For MUCO problems with one ordinal and a second ordinal or real-valued objective function we present an even more efficient algorithm that applies a greedy strategy multiple times.
引用
收藏
页数:7
相关论文
共 19 条
[1]  
[Anonymous], 1988, Integer and combinatorial optimization
[2]  
Bokler Fritz, 2017, Evolutionary Multi-Criterion Optimization. 9th International Conference, EMO 2017. Proceedings: LNCS 10173, P77, DOI 10.1007/978-3-319-54157-0_6
[3]   A simple, efficient and versatile objective space algorithm for multiobjective integer programming [J].
Daechert, Kerstin ;
Fleuren, Tino ;
Klamroth, Kathrin .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2024, 100 (01) :351-384
[4]  
Delort C, 2011, LECT NOTES ARTIF INT, V6992, P28, DOI 10.1007/978-3-642-24873-3_3
[5]   A survey and annotated bibliography of multiobjective combinatorial optimization [J].
Ehrgott M. ;
Gandibleux X. .
OR-Spektrum, 2000, 22 (4) :425-460
[6]  
Ehrgott M, 2000, LECT NOTES ECON MATH, V487, P69
[7]  
Ehrgott M., 2005, MULTICRITERIA OPTIMI, DOI 10.1007/3-540-27659-9
[8]  
Figueira JR, 2017, J MULTI-CRITERIA DEC, V24, P82, DOI 10.1002/mcda.1574
[9]   A NEW POLYNOMIAL-TIME ALGORITHM FOR LINEAR-PROGRAMMING [J].
KARMARKAR, N .
COMBINATORICA, 1984, 4 (04) :373-395
[10]   Ordinal optimization through multi-objective reformulation [J].
Klamroth, Kathrin ;
Stiglmayr, Michael ;
Sudhoff, Julia .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2023, 311 (02) :427-443