Some Identities for the Chebyshev Polynomials Using Graph Matchings

被引:0
作者
Djellas, Ihab-Eddine [1 ,2 ]
Taane, Abdelhak [3 ]
Belbachir, Hacene [2 ]
机构
[1] CERIST, Sci & Tech Informat Res Ctr, Algiers, Algeria
[2] USTHB, Fac Math, RECITS Lab, POB 32 El Alia, Algiers 16111, Algeria
[3] Univ Kasdi Merbah, Dept Math, Lab Appl Math, Ouargla, Algeria
关键词
Chebyshev polynomials; graph matching; matching polynomial; bivariate Fibonacci; Fibonacci numbers; Lucas numbers; paths; cycles; GENERALIZED FIBONACCI;
D O I
10.1007/s00009-025-02885-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the matching polynomials of some particular graphs, the present work aims to establish several novel identities for Chebyshev polynomials of the first and second kind. Mainly, we give closed formulas for Tr1+r2+& ctdot;+rs(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{r_{1}+r_{2}+\cdots + r_{s}}(x)$$\end{document} and Ur1+r2+& ctdot;+rs(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{r_{1}+r_{2}+\cdots + r_{s}}(x)$$\end{document}, for any positive integers ri >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_{i}\ge 2$$\end{document}(1 <= i <= s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1\le i\le s)$$\end{document}, where Tn(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{n}(x)$$\end{document} and Un(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{n}(x)$$\end{document} are the nth\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n<^>{th}$$\end{document} Chebyshev terms of the first and second kind, respectively. As an immediate application, several trigonometric identities are derived. Additionally, due to their connections with the classical Fibonacci and Lucas numbers, we derive several new identities for these latter sequences.
引用
收藏
页数:21
相关论文
共 29 条
[1]  
Abchiche M, 2018, Discussiones Mathematicae - General Algebra and Applications, V38, P79, DOI [10.7151/dmgaa.1278, 10.7151/dmgaa.1278, DOI 10.7151/DMGAA.1278]
[2]  
Adegoke K., 2023, J. Integer Seq, V26, P23
[3]  
Belbachir Hacene, 2008, Discussiones Mathematicae General Algebra and Applications, V28, P121, DOI 10.7151/dmgaa.1138
[4]  
Belbachir H, 2022, J INTEGER SEQ, V25
[5]   LINK BETWEEN HOSOYA INDEX AND FIBONACCI NUMBERS [J].
Belbachir, Hacene ;
Harik, Hakim .
MISKOLC MATHEMATICAL NOTES, 2018, 19 (02) :741-748
[6]  
Belbachir H, 2013, ARS COMBINATORIA, V110, P33
[7]  
Belbachir H, 2008, J INTEGER SEQ, V11
[8]  
Benjamin A.T., 2009, Math. Mag, V82, P117, DOI DOI 10.1080/0025570X.2009.11953605
[9]   Combinatorial trigonometry with Chebyshev polynomials [J].
Benjamin, Arthur T. ;
Ericksen, Larry ;
Jayawant, Pallavi ;
Shattuck, Mark .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (08) :2157-2160
[10]  
CASTELLANOS D, 1989, FIBONACCI QUART, V27, P424