Rogue wave dynamics and energy spectra for the generalized Heisenberg spin chain equation

被引:0
作者
Liu, Xue-Ke [1 ]
Wang, Zhen [1 ]
Du, Ruo-Chen [1 ]
Wen, o-Yong [2 ]
机构
[1] Beihang Univ, Sch Math Sci, Beijing 100191, Peoples R China
[2] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Generalized Heisenberg spin chain equation; Iterative generalized Darboux transformation; Rogue wave spectra; Rogue wave dynamics; SOLITON; SEA;
D O I
10.1016/j.chaos.2025.116451
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We conduct a systematic investigation on the rogue wave structures of the generalized Heisenberg spin chain equation, offering potential insights into the dynamics of nonlinear waves in some ferromagnetic materials. Firstly, an iterative generalized Darboux transformation is proposed to obtain the exact high-order rogue waves on the plane wave backgrounds. Particularly, it is interesting that we also successfully derive the energy spectra of rogue waves via the fast Fourier transform routine, which reveals significant difference compared with the triangular spectra of the nonlinear Schr & ouml;dinger equation. Secondly, we extend the representation of large parameter asymptotic analysis to any order rogue wave solutions of the generalized Heisenberg spin chain equation for the first time. Depending on varying parameters, rogue waves display distinct separation patterns, encompassing triangles, pentagons, heptagons and even pentagrams. Finally, we numerically simulate the dynamical behaviors of some rogue waves via the split-step Fourier transform method. These results may be valuable to the exploration of physical importance for Heisenberg-type system in ferromagnet.
引用
收藏
页数:13
相关论文
共 46 条
[11]   From rogue wave solution to solitons [J].
Chowdury, Amdad ;
Chang, Wonkeun ;
Battiato, Marco .
PHYSICAL REVIEW E, 2023, 107 (01)
[12]  
Cui S, 2024, Chin Phys B, V33
[13]   Numerical inverse scattering transform for the derivative nonlinear Schrödinger equation [J].
Cui, Shikun ;
Wang, Zhen .
NONLINEARITY, 2024, 37 (10)
[14]  
Dysthe K, 2008, ANNU REV FLUID MECH, V40, P287, DOI [10.1146/annurev.fluid.40.111406.102203, 10.1146/annurev.fluid.40.111406.102]
[15]  
Gu C., 2005, Darboux transformations in integrable systems: theory and their applications to geometry, DOI DOI 10.1007/1-4020-3088-6
[16]   Nonlinear Schrodinger equation: Generalized Darboux transformation and rogue wave solutions [J].
Guo, Boling ;
Ling, Liming ;
Liu, Q. P. .
PHYSICAL REVIEW E, 2012, 85 (02)
[17]   EXACT ENVELOPE-SOLITON SOLUTIONS OF A NONLINEAR WAVE-EQUATION [J].
HIROTA, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (07) :805-809
[18]   The Peregrine soliton in nonlinear fibre optics [J].
Kibler, B. ;
Fatome, J. ;
Finot, C. ;
Millot, G. ;
Dias, F. ;
Genty, G. ;
Akhmediev, N. ;
Dudley, J. M. .
NATURE PHYSICS, 2010, 6 (10) :790-795
[19]   MAGNETIC SOLITONS [J].
KOSEVICH, AM ;
IVANOV, BA ;
KOVALEV, AS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 194 (3-4) :117-238
[20]   DYNAMICS OF A CONTINUUM SPIN SYSTEM [J].
LAKSHMANAN, M ;
RUIJGROK, TW ;
THOMPSON, CJ .
PHYSICA A, 1976, 84 (03) :577-590