A Machine Learning based uncertainty quantification for compressive strength of high-performance concrete

被引:1
作者
Vu-Bac, Nam [1 ,2 ]
Le-Anh, Tuan [1 ,2 ]
Rabczuk, Timon [3 ]
机构
[1] Ho Chi Minh Univ Technol HCMUT, Fac Civil Engn, Ho Chi Minh City 740500, Vietnam
[2] Vietnam Natl Univ Ho Chi Minh City, Ho Chi Minh City 740500, Vietnam
[3] Bauhaus Univ Weimar, Inst Struct Mech, D-99423 Weimar, Germany
关键词
uncertainty quantification; machine learning; Artificial Neural Networks; compressive strength of concrete; dependent variables; STOCHASTIC PREDICTIONS; NANOCOMPOSITES; FRAMEWORK; DESIGN;
D O I
10.1007/s11709-025-1181-8
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
High performance concrete (HPC) properties depend on both its constituent materials and their interaction. This study presents a machine learning framework to quantify the effects of constituents on HPC compressive strength. We first develop a stochastic constitutive model using experimental data and subsequently employ an uncertainty quantification method to identify key parameters in relation to the compressive strength of HPC. The resultant sensitivity indices indicate that fly ash content has the strongest influence on compressive strength, followed by concrete age at test and blast surface slag content.
引用
收藏
页码:824 / 836
页数:13
相关论文
共 28 条
[1]  
Abrams D.A., 1918, Design of Concrete Mixtures
[2]  
American coal ash association, 2003, TECHNICAL REPORT FHW
[3]  
[Anonymous], 1990, Matematicheskoe Modelirovanie, DOI DOI 10.18287/0134-2452-2015-39-4-459-461
[4]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[5]  
Chollet F., 2017, Deep Learning with Python
[6]  
Forrester A., 2008, Engineering Design via Surrogate Modelling: A Practical Guide, DOI [10.1002/9780470770801, DOI 10.1002/9780470770801]
[7]   Importance measures in global sensitivity analysis of nonlinear models [J].
Homma, T ;
Saltelli, A .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 1996, 52 (01) :1-17
[8]   HPC STRENGTH PREDICTION USING ARTIFICIAL NEURAL-NETWORK [J].
KASPERKIEWICZ, J ;
RAEZ, J ;
DUBRAWSKI, A .
JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 1995, 9 (04) :279-284
[9]   Estimation of global sensitivity indices for models with dependent variables [J].
Kucherenko, S. ;
Tarantola, S. ;
Annoni, P. .
COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (04) :937-946
[10]   An ANN Model for Predicting the Compressive Strength of Concrete [J].
Lin, Chia-Ju ;
Wu, Nan-Jing .
APPLIED SCIENCES-BASEL, 2021, 11 (09)