Feature Reconstruction Guided Fusion Network for Hyperspectral and LiDAR Classification

被引:0
作者
Li, Zhi [1 ,2 ]
Zheng, Ke [3 ]
Gao, Lianru [1 ]
Zi, Nannan [2 ,4 ]
Li, Chengrui [5 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Computat Opt Imaging Technol, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
[3] Liaocheng Univ, Coll Geog & Environm, Liaocheng 252059, Peoples R China
[4] Chinese Acad Sci, Aerosp Informat Res Inst, Airborne Remote Sensing Ctr, Beijing 100094, Peoples R China
[5] Georgia Inst Technol, Sch Computat Sci & Engn, Atlanta, GA 30305 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2025年 / 63卷
基金
中国国家自然科学基金;
关键词
Feature extraction; Laser radar; Image reconstruction; Dimensionality reduction; Principal component analysis; Deep learning; Hyperspectral imaging; Data mining; Visualization; Semantics; Classification; fusion; hyperspectral images (HSIs); light detection and ranging (LiDAR); multimodel remote sensing; IMAGE FUSION;
D O I
10.1109/TGRS.2025.3562246
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Deep learning has become increasingly popular in hyperspectral image (HSI) and light detection and ranging (LiDAR) data classification, thanks to its powerful feature learning and representation capabilities. However, HSI often contains substantial redundant information, which can hinder efficient data utilization. Furthermore, the significant disparity in information content between HSI and LiDAR data poses a major challenge in representing and aligning semantic information across these two modalities. To address these challenges, we propose a fusion network structure guided by feature reconstruction embedding (FRE). This approach employs feature decomposition to reconstruct HSI features and incorporates weight embedding to seamlessly integrate the reconstructed information into classification features. Furthermore, we introduce a cross-modal attention fusion module designed to merge extracted HSI and LiDAR features. This module fully exploits the complementary nature of these two type of feature, facilitating effective information exchange and semantic alignment across multimodal data. We evaluated our method on three widely used HSI and LiDAR datasets: Houston 2013, Augsburg, and MUUFL. Experimental results demonstrate that our proposed FRGFNet significantly outperforms traditional probabilistic methods and state-of-the-art deep learning networks, showcasing its effectiveness in multisource data fusion.
引用
收藏
页数:14
相关论文
共 33 条
[1]   Spectral-Spatial-Language Fusion Network for Hyperspectral, LiDAR, and Text Data Classification [J].
Cao, Mengxin ;
Zhao, Guixin ;
Lv, Guohua ;
Dong, Aimei ;
Guo, Ying ;
Dong, Xiangjun .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 :1-15
[2]   Hyperspectral and LiDAR Data Fusion: Outcome of the 2013 GRSS Data Fusion Contest [J].
Debes, Christian ;
Merentitis, Andreas ;
Heremans, Roel ;
Hahn, Juergen ;
Frangiadakis, Nikolaos ;
van Kasteren, Tim ;
Liao, Wenzhi ;
Bellens, Rik ;
Pizurica, Aleksandra ;
Gautama, Sidharta ;
Philips, Wilfried ;
Prasad, Saurabh ;
Du, Qian ;
Pacifici, Fabio .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) :2405-2418
[3]   S2ENet: Spatial-Spectral Cross-Modal Enhancement Network for Classification of Hyperspectral and LiDAR Data [J].
Fang, Sheng ;
Li, Kaiyu ;
Li, Zhe .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
[4]   DSHFNet: Dynamic Scale Hierarchical Fusion Network Based on Multiattention for Hyperspectral Image and LiDAR Data Classification [J].
Feng, Yining ;
Song, Liyang ;
Wang, Lu ;
Wang, Xianghai .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
[5]   Multisource Feature Embedding and Interaction Fusion Network for Coastal Wetland Classification With Hyperspectral and LiDAR Data [J].
Guo, Fangming ;
Meng, Qiao ;
Li, Zhongwei ;
Ren, Guangbo ;
Wang, Leiquan ;
Zhang, Jie ;
Xin, Rongyu ;
Hu, Yabin .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 :1-16
[6]   DUAL GRAPH CONVOLUTION JOINT DENSE NETWORKS FOR HYPERSPECTRAL AND LIDAR DATA CLASSIFICATION [J].
Guo, Fangming ;
Li, Zhongwei ;
Meng, Qiao ;
Wang, Leiquan ;
Zhang, Jie .
2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, :1141-1144
[7]   CMSE: Cross-Modal Semantic Enhancement Network for Classification of Hyperspectral and LiDAR Data [J].
Han, Wenqi ;
Miao, Wang ;
Geng, Jie ;
Jiang, Wen .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 :1-14
[8]   Classification of Hyperspectral and LiDAR Data Using Coupled CNNs [J].
Hang, Renlong ;
Li, Zhu ;
Ghamisi, Pedram ;
Hong, Danfeng ;
Xia, Guiyu ;
Liu, Qingshan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (07) :4939-4950
[9]  
Hu J., 2022, Earth Syst. Sci. Data Discuss., V15, P1
[10]   Pixel- and region-based image fusion with complex wavelets [J].
Lewis, John J. ;
O'Callaghan, Robert J. ;
Nikolov, Stavri G. ;
Bull, David R. ;
Canagarajah, Nishan .
INFORMATION FUSION, 2007, 8 (02) :119-130