Thermo-kinetic analysis of pyrolysis of chickpea stalk using thermogravimetric analysis and artificial neural network

被引:2
作者
Sahu, Ravi Kumar [1 ,2 ]
Gangil, Sandip [1 ]
机构
[1] ICAR Cent Inst Agr Engn, Bhopal 462038, Madhya Pradesh, India
[2] Grad Sch IARI, New Delhi, India
关键词
Artificial neural networks; Thermogravimetric analysis; Chickpea stalk; Kinetic analysis; Activation energy; THERMODYNAMIC ANALYSIS; CASHEW SHELL; PARAMETERS; SIGNALS; BIOMASS; ENERGY; WASTE; TRANSITIONS; BRIQUETTES; LIGNIN;
D O I
10.1016/j.biombioe.2025.107860
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
This research used artificial neural networks (ANN) to predict the complex pyrolysis behaviour of chickpea stalk (CS) using factors such as temperature (degrees C) and heating rate (degrees C/min). This is the first comprehensive kinetic and thermodynamic analysis of CS during pyrolysis thermal degradation, using thermogravimetric analysis (TGA) at four different heating rates. Kinetic parameters were determined using the Flynn-Wall-Ozawa (FWO), KissingerAkahira-Sunose (KAS), and Starink methods. Results revealed that CS undergoes mass loss in three stages and major volatile degradation occurring between 143 and 374 degrees C. The average activation energies for FWO, KAS, and Starink models were 301.01, 291.11, and 306.42 kJ/mol, respectively, with no significant differences. Thermodynamic parameters such as enthalpy, entropy, and Gibbs free energy were critically explained. The master plot shows strong agreement with the order-based, diffusion, and power-law models. This leads to the conclusion that chickpea stalk contains potential as feedstock.
引用
收藏
页数:13
相关论文
共 69 条
[1]   Determination of kinetic triplet, thermal degradation behaviour and thermodynamic properties for pyrolysis of a lignocellulosic biomass [J].
Acikalin, Korkut .
BIORESOURCE TECHNOLOGY, 2021, 337
[2]   Thermogravimetric analysis of walnut shell as pyrolysis feedstock [J].
Acikalin, Korkut .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2011, 105 (01) :145-150
[3]   A modified DAEM: To study the bioenergy potential of invasive Staghorn Sumac through pyrolysis, ANN, TGA, kinetic modeling, FTIR and GC-MS analysis [J].
Ahmad, Muhammad Sajjad ;
Liu, Hui ;
Alhumade, Hesham ;
Tahir, Muddasar Hussain ;
Cakman, Gulce ;
Yildiz, Agah ;
Ceylan, Selim ;
Elkamel, Ali ;
Shen, Boxiong .
ENERGY CONVERSION AND MANAGEMENT, 2020, 221
[4]   Pyrolysis, kinetics analysis, thermodynamics parameters and reaction mechanism of Typha latifolia to evaluate its bioenergy potential [J].
Ahmad, Muhammad Sajjad ;
Mehmooda, Muhammad Aamer ;
Taqvi, Syed Taha Haider ;
Elkamel, Ali ;
Liu, Chen-Guang ;
Xu, Jianren ;
Rahimuddin, Sawsan Abdulaziz ;
Gull, Munazza .
BIORESOURCE TECHNOLOGY, 2017, 245 :491-501
[5]   Kinetic analyses and pyrolytic behavior of Para grass (Urochloa mutica) for its bioenergy potential [J].
Ahmad, Muhammad Sajjad ;
Mehmood, Muhammad Aamer ;
Al Ayed, Omar S. ;
Ye, Guangbin ;
Luo, Huibo ;
Ibrahim, Muhammad ;
Rashid, Umer ;
Nehdi, Imededdine Arbi ;
Qadir, Ghulam .
BIORESOURCE TECHNOLOGY, 2017, 224 :708-713
[6]   Analysis of Pyrolysis Kinetic Parameters Based on Various Mathematical Models for More than Twenty Different Biomasses: A Review [J].
Alvarado Flores, Jose Juan ;
Alcaraz Vera, Jorge Victor ;
Avalos Rodriguez, Maria Liliana ;
Lopez Sosa, Luis Bernardo ;
Rutiaga Quinones, Jose Guadalupe ;
Pintor Ibarra, Luis Fernando ;
Montesino, Francisco Marquez ;
Zarraga, Roberto Aguado .
ENERGIES, 2022, 15 (18)
[7]   Insights into pyrolytic feedstock potential of date palm industry wastes: Kinetic study and product characterization [J].
Bensidhom, Gmar ;
Trabelsi, Aida Ben Hassen ;
Mahmood, Marwan A. ;
Ceylan, Selim .
FUEL, 2021, 285
[8]   Artificial neural network approach for co-pyrolysis of Chlorella vulgaris and peanut shell binary mixtures using microalgae ash catalyst [J].
Bong, Jang Tyng ;
Loy, Adrian Chun Minh ;
Chin, Bridgid Lai Fui ;
Lam, Man Kee ;
Tang, Daniel Kuok Ho ;
Lim, Huei Yeong ;
Chai, Yee Ho ;
Yusup, Suzana .
ENERGY, 2020, 207
[9]   Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk [J].
Cai, Junmeng ;
Xu, Di ;
Dong, Zhujun ;
Yu, Xi ;
Yang, Yang ;
Banks, Scott W. ;
Bridgwater, Anthony V. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 82 :2705-2715
[10]   Activation energy prediction of biomass wastes based on different neural network topologies [J].
Cepeliogullar, Ozge ;
Mutlu, Ilhan ;
Yaman, Serdar ;
Haykiri-Acma, Hanzade .
FUEL, 2018, 220 :535-545