Shallower CNOT Circuits on Realistic Quantum Hardware

被引:0
作者
De Brugiere, Timothee Goubault [1 ]
Martiel, Simon [2 ]
机构
[1] Quandela, Massy, France
[2] Atos, Bezons, Ile De France, France
来源
ACM TRANSACTIONS ON QUANTUM COMPUTING | 2025年 / 6卷 / 02期
关键词
Linear reversible circuits; quantum computation; compilation; circuit depth;
D O I
10.1145/3700884
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We focus on the depth optimization of CNOT circuits on hardware with limited connectivity. We adapt the algorithm from Kutin et al. that implements any n-qubit CNOT circuit in depth at most 5n on a Linear Nearest Neighbor architecture. Our proposal is a block version of Kutin et al.'s algorithm that is scalable with the number of interactions available in the hardware: the more interactions we have, the less the depth. We derive better theoretical upper bounds and provide a simple implementation of the algorithm. Overall, we achieve better depth complexity for CNOT circuits on some realistic quantum hardware like a grid or a ladder. For instance, the execution of an n-qubit CNOT circuit on a grid can be done in depth 4n + 8.
引用
收藏
页数:24
相关论文
共 25 条
[1]   Improved simulation of stabilizer circuits [J].
Aaronson, S ;
Gottesman, D .
PHYSICAL REVIEW A, 2004, 70 (05) :052328-1
[2]   On the controlled-NOT complexity of controlled-NOT-phase circuits [J].
Amy, Matthew ;
Azimzadeh, Parsiad ;
Mosca, Michele .
QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (01)
[3]  
Andrews George E., 1998, Encyclopedia of Mathematics and Its Applications, Series, V2
[4]   Universal quantum computation with ideal Clifford gates and noisy ancillas [J].
Bravyi, S ;
Kitaev, A .
PHYSICAL REVIEW A, 2005, 71 (02)
[5]   Hadamard-Free Circuits Expose the Structure of the Clifford Group [J].
Bravyi, Sergey ;
Maslov, Dmitri .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (07) :4546-4563
[6]   Decoding techniques applied to the compilation of CNOT circuits for NISQ architectures [J].
de Brugiere, Timothee Goubault ;
Baboulin, Marc ;
Valiron, Benoit ;
Martiel, Simon ;
Allouche, Cyril .
SCIENCE OF COMPUTER PROGRAMMING, 2022, 214
[7]   Gaussian Elimination versus Greedy Methods for the Synthesis of Linear Reversible Circuits [J].
De Brugiere, Timothee Goubault ;
Baboulin, Marc ;
Valiron, Benoit ;
Martiel, Simon ;
Allouche, Cyril .
ACM TRANSACTIONS ON QUANTUM COMPUTING, 2021, 2 (03)
[8]   Reducing the Depth of Linear Reversible Quantum Circuits [J].
De Brugiere, Timothee Goubault ;
Baboulin, Marc ;
Valiron, Benoit ;
Martiel, Simon ;
Allouche, Cyril .
IEEE TRANSACTIONS ON QUANTUM ENGINEERING, 2021, 2
[9]   Graph-theoretic Simplification of Quantum Circuits with the ZX-calculus [J].
Duncan, Ross ;
Kissinger, Aleks ;
Perdrix, Simon ;
van de Wetering, John .
QUANTUM, 2020, 4
[10]  
Gottesman D, 1997, THESIS CALIFORNIA I