Aggregatedf-average neural network applied to few-shot class incremental learning

被引:0
作者
Vu, Mathieu [1 ]
Chouzenoux, Emilie [1 ]
Ben Ayed, Ismail [2 ]
Pesquet, Jean-Christophe [1 ]
机构
[1] Univ Paris Saclay, OPIS CVN, Inria Saclay, Cent Supelec, 3 Rue Joliot Curie, F-91190 Gif Sur Yvette, Ile De France, France
[2] Ecole Technol Super, LIVIA, 1100 Rue Notre Dame Ouest, Montreal, PQ H3C 1K3, Canada
基金
欧洲研究理事会;
关键词
Ensemble learning; Estimator aggregation; Few-shot learning; Incremental learning;
D O I
10.1016/j.sigpro.2025.110054
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Ensemble learning leverages multiple models (i.e., weak learners) on a common machine learning task to enhance prediction performance. Basic ensembling approaches average weak learners outputs, while more sophisticated ones stack a machine learning model in between the weak learners outputs and the final prediction. This work merges both aforementioned frameworks. We introduce an aggregated f-averages (AFA) shallow neural network which models and combines different types of averages to perform an optimal aggregation of the weak learners predictions. We emphasise its interpretable architecture and simple training strategy and illustrate its good performance on the problem of few-shot class incremental learning.
引用
收藏
页数:13
相关论文
共 41 条
[1]  
Boudiaf M., 2020, P ADV NEUR INF PROC, V33, P2445, DOI DOI 10.5555/3495724.3495930
[2]   A Survey of Predictive Modeling on Im balanced Domains [J].
Branco, Paula ;
Torgo, Luis ;
Ribeiro, Rita P. .
ACM COMPUTING SURVEYS, 2016, 49 (02)
[3]   Bagging predictors [J].
Breiman, L .
MACHINE LEARNING, 1996, 24 (02) :123-140
[4]   End-to-End Incremental Learning [J].
Castro, Francisco M. ;
Marin-Jimenez, Manuel J. ;
Guil, Nicolas ;
Schmid, Cordelia ;
Alahari, Karteek .
COMPUTER VISION - ECCV 2018, PT XII, 2018, 11216 :241-257
[5]  
Chen K., 2020, P INT C LEARN REPR I
[6]  
Chen W., 2019, INT C LEARN REPR
[7]  
Condat L, 2016, MATH PROGRAM, V158, P575, DOI 10.1007/s10107-015-0946-6
[8]  
Finn C, 2017, PR MACH LEARN RES, V70
[9]   A decision-theoretic generalization of on-line learning and an application to boosting [J].
Freund, Y ;
Schapire, RE .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1997, 55 (01) :119-139
[10]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778