How do Printing Parameters Influence the Tensile Performance of 3D-Printed Lightweight Structures: A Comprehensive Analysis and Optimization Approach?

被引:0
作者
Abd El-Halim, Mahmoud F. [1 ]
Allah, Mahmoud M. Awd [1 ,2 ]
Ibrahim, Ahmed [1 ]
Fathy, Adel [1 ]
机构
[1] Zagazig Univ, Mech Design & Prod Engn Dept, Zagazig 44519, Egypt
[2] Southern Methodist Univ, Mech Engn Dept, Dallas, TX 75240 USA
关键词
Advanced polylactic acid; Fused deposition modeling; Optimization; Taguchi method; Failure analysis;
D O I
暂无
中图分类号
TB3 [工程材料学]; TS1 [纺织工业、染整工业];
学科分类号
0805 ; 080502 ; 0821 ;
摘要
3D printing enables the creation of lightweight cellular structures, balancing high strength and stiffness, enabling complex shapes that are challenging to achieve with conventional manufacturing methods. Subsequently, this study seeks to optimize the printing parameters of advanced polylactic acid (PLA+) structures to maximize their mechanical performance under tensile loading. For this reason, four key design parameters, the layer height, the infill pattern structure, the infill density, and the nozzle temperature, each at three levels, were selected. The design of experiments framework has employed the Taguchi approach to determine the ideal parameters for attaining the optimum tensile performance. A number of experiments were carried out using the L9 orthogonal array. Through the largest ultimate tensile strength (sigma ult\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma_{{{\text{ult}}}}$$\end{document}), failure strain (epsilon f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon_{{\text{f}}}$$\end{document}), tensile modulus (E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document}), and toughness modulus (UT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{{\text{T}}}$$\end{document}), the optimal parameters were established. The analysis demonstrated that the studied parameters significantly impact the tensile performance of PLA+. According to the accomplished analysis, infill density has the largest influence on the value of sigma ult\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma_{{{\text{ult}}}}$$\end{document}, E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document}, and UT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{{\text{T}}} $$\end{document} with an influence percent of 76.072, 85.062, and 55.116%, respectively. However, nozzle temperature has the most significant influence on epsilon f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon_{{\text{f}}}$$\end{document} with 48.668% influence percent. Moreover, the error percentages for sigma ult\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma_{{{\text{ult}}}}$$\end{document}, epsilon f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon_{{\text{f}}}$$\end{document}, E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document}, and UT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{{\text{T}}}$$\end{document} based on the confirmation tests are 2.945, 13.051, 6.480, and 10.520%, respectively.
引用
收藏
页码:1879 / 1895
页数:17
相关论文
共 69 条
[41]   3D Printed Concrete for Sustainable Construction: A Review of Mechanical Properties and Environmental Impact [J].
Hassan, Amer ;
Alomayri, Thamer ;
Noaman, Mohammed Faisal ;
Zhang, Chunwei .
ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2025,
[42]  
Hassan H. Z., 2024, Discov. Civ. Eng, V1, P47, DOI [10.1007/s44290-024-00049-z, DOI 10.1007/S44290-024-00049-Z]
[43]   Lateral crashing response of thin-walled composite structures filled with carbon nanopowder [J].
Hegazy, Dalia A. ;
Allah, Mahmoud M. Awd ;
Alshahrani, Hassan ;
Sebaey, Tamer A. ;
Abd El-Baky, Marwa A. .
POLYMER COMPOSITES, 2024, 45 (18) :16424-16433
[44]   Analysis of the Impact of Cooling Lubricants on the Tensile Properties of FDM 3D Printed PLA and PLA plus CF Materials [J].
Hozdic, Elvis ;
Hasanagic, Redzo .
POLYMERS, 2024, 16 (15)
[45]   A highly ductile carbon material made of triangle rings: A study of machine learning [J].
Huang, Guan ;
Zhang, Lichuan ;
Chu, Shibing ;
Xie, Yuee ;
Chen, Yuanping .
APPLIED PHYSICS LETTERS, 2024, 124 (04)
[46]   Mechanical Characteristics of Sandwich Structures with 3D-Printed Bio-Inspired Gyroid Structure Core and Carbon Fiber-Reinforced Polymer Laminate Face-Sheet [J].
Junaedi, Harri ;
Abd El-baky, Marwa A. ;
Awd Allah, Mahmoud M. ;
Sebaey, Tamer A. .
POLYMERS, 2024, 16 (12)
[47]  
Kamaruddin S., 2004, JURNAL MEKANIKAL, V18, P98
[48]   Polymers for 3D Printing and Customized Additive Manufacturing [J].
Ligon, Samuel Clark ;
Liska, Robert ;
Stampfl, Juergen ;
Gurr, Matthias ;
Muelhaupt, Rolf .
CHEMICAL REVIEWS, 2017, 117 (15) :10212-10290
[49]   Mechanical property parametric appraisal of fused deposition modeling parts based on the gray Taguchi method [J].
Liu, Xinhua ;
Zhang, Mingshan ;
Li, Shengpeng ;
Si, Lei ;
Peng, Junquan ;
Hu, Yuan .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2017, 89 (5-8) :2387-2397
[50]   Stacking sequence optimization of variable thickness composite laminated plate based on multi-peak stacking sequence table [J].
Peng, Xiang ;
Chen, Kenan ;
Jia, Weiqiang ;
Li, Kexin ;
Huang, Chen ;
Liu, Xin .
COMPOSITE STRUCTURES, 2025, 356