How do Printing Parameters Influence the Tensile Performance of 3D-Printed Lightweight Structures: A Comprehensive Analysis and Optimization Approach?

被引:0
作者
Abd El-Halim, Mahmoud F. [1 ]
Allah, Mahmoud M. Awd [1 ,2 ]
Ibrahim, Ahmed [1 ]
Fathy, Adel [1 ]
机构
[1] Zagazig Univ, Mech Design & Prod Engn Dept, Zagazig 44519, Egypt
[2] Southern Methodist Univ, Mech Engn Dept, Dallas, TX 75240 USA
关键词
Advanced polylactic acid; Fused deposition modeling; Optimization; Taguchi method; Failure analysis;
D O I
暂无
中图分类号
TB3 [工程材料学]; TS1 [纺织工业、染整工业];
学科分类号
0805 ; 080502 ; 0821 ;
摘要
3D printing enables the creation of lightweight cellular structures, balancing high strength and stiffness, enabling complex shapes that are challenging to achieve with conventional manufacturing methods. Subsequently, this study seeks to optimize the printing parameters of advanced polylactic acid (PLA+) structures to maximize their mechanical performance under tensile loading. For this reason, four key design parameters, the layer height, the infill pattern structure, the infill density, and the nozzle temperature, each at three levels, were selected. The design of experiments framework has employed the Taguchi approach to determine the ideal parameters for attaining the optimum tensile performance. A number of experiments were carried out using the L9 orthogonal array. Through the largest ultimate tensile strength (sigma ult\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma_{{{\text{ult}}}}$$\end{document}), failure strain (epsilon f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon_{{\text{f}}}$$\end{document}), tensile modulus (E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document}), and toughness modulus (UT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{{\text{T}}}$$\end{document}), the optimal parameters were established. The analysis demonstrated that the studied parameters significantly impact the tensile performance of PLA+. According to the accomplished analysis, infill density has the largest influence on the value of sigma ult\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma_{{{\text{ult}}}}$$\end{document}, E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document}, and UT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{{\text{T}}} $$\end{document} with an influence percent of 76.072, 85.062, and 55.116%, respectively. However, nozzle temperature has the most significant influence on epsilon f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon_{{\text{f}}}$$\end{document} with 48.668% influence percent. Moreover, the error percentages for sigma ult\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma_{{{\text{ult}}}}$$\end{document}, epsilon f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon_{{\text{f}}}$$\end{document}, E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document}, and UT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{{\text{T}}}$$\end{document} based on the confirmation tests are 2.945, 13.051, 6.480, and 10.520%, respectively.
引用
收藏
页码:1879 / 1895
页数:17
相关论文
共 69 条
[31]  
Costanzo A., 2023, Inter-layer adhesion in material extrusion 3D printing: effect of processing and molecular variables
[32]   Influence of Extruder's Nozzle Diameter on the Improvement of Functional Properties of 3D-Printed PLA Products [J].
Czyzewski, Piotr ;
Marciniak, Dawid ;
Nowinka, Bartosz ;
Borowiak, Michal ;
Bielinski, Marek .
POLYMERS, 2022, 14 (02)
[33]   Printing parameters and materials affecting mechanical properties of FDM-3D printed Parts: Perspective and prospects [J].
Doshi, Manav ;
Mahale, Ameya ;
Singh, Suraj Kumar ;
Deshmukh, Samadhan .
MATERIALS TODAY-PROCEEDINGS, 2022, 50 :2269-2275
[34]   Optimization of printing parameters for improvement of mechanical and thermal performances of 3D printed poly(ether ether ketone) parts [J].
El Magri, Anouar ;
El Mabrouk, Khalil ;
Vaudreuil, Sebastien ;
Chibane, Hicham ;
Touhami, Mohamed Ebn .
JOURNAL OF APPLIED POLYMER SCIENCE, 2020, 137 (37)
[35]  
Erokhin K., 2023, Chemistry, DOI [10.26434/chemrxiv-2023-lw1ns, DOI 10.26434/CHEMRXIV-2023-LW1NS]
[36]   Development of Fiber-Reinforced Polymer Composites for Additive Manufacturing and Multi-Material Structures in Sustainable Applications [J].
Faidallah, Rawabe Fatima ;
Hanon, Muammel M. ;
Salman, Nihal D. ;
Ibrahim, Yousef ;
Babu, Md. Noman ;
Gaaz, Tayser Sumer ;
Szakal, Zoltan ;
Oldal, Istvan .
PROCESSES, 2024, 12 (10)
[37]  
Fernandes CP., 2019, RES J ENG TECHNOL, V123
[38]   Investigation of Tensile Properties of Different Infill Pattern Structures of 3D-Printed PLA Polymers: Analysis and Validation Using Finite Element Analysis in ANSYS [J].
Ganeshkumar, S. ;
Kumar, S. Dharani ;
Magarajan, U. ;
Rajkumar, S. ;
Arulmurugan, B. ;
Sharma, Shubham ;
Li, Changhe ;
Ilyas, R. A. ;
Badran, Mohamed Fathy .
MATERIALS, 2022, 15 (15)
[39]   Uniaxial tensile stress-strain constitutive relationship of 3D/4D/5D steel fiber-reinforced concrete [J].
Gao, Danying ;
Li, Ziyu ;
Ding, Chong ;
Yu, Zhenyun .
CONSTRUCTION AND BUILDING MATERIALS, 2025, 470
[40]   Trends in 3D Printing Processes for Biomedical Field: Opportunities and Challenges [J].
Ghilan, Alina ;
Chiriac, Aurica P. ;
Nita, Loredana E. ;
Rusu, Alina G. ;
Neamtu, Iordana ;
Chiriac, Vlad Mihai .
JOURNAL OF POLYMERS AND THE ENVIRONMENT, 2020, 28 (05) :1345-1367