How do Printing Parameters Influence the Tensile Performance of 3D-Printed Lightweight Structures: A Comprehensive Analysis and Optimization Approach?

被引:0
作者
Abd El-Halim, Mahmoud F. [1 ]
Allah, Mahmoud M. Awd [1 ,2 ]
Ibrahim, Ahmed [1 ]
Fathy, Adel [1 ]
机构
[1] Zagazig Univ, Mech Design & Prod Engn Dept, Zagazig 44519, Egypt
[2] Southern Methodist Univ, Mech Engn Dept, Dallas, TX 75240 USA
关键词
Advanced polylactic acid; Fused deposition modeling; Optimization; Taguchi method; Failure analysis;
D O I
暂无
中图分类号
TB3 [工程材料学]; TS1 [纺织工业、染整工业];
学科分类号
0805 ; 080502 ; 0821 ;
摘要
3D printing enables the creation of lightweight cellular structures, balancing high strength and stiffness, enabling complex shapes that are challenging to achieve with conventional manufacturing methods. Subsequently, this study seeks to optimize the printing parameters of advanced polylactic acid (PLA+) structures to maximize their mechanical performance under tensile loading. For this reason, four key design parameters, the layer height, the infill pattern structure, the infill density, and the nozzle temperature, each at three levels, were selected. The design of experiments framework has employed the Taguchi approach to determine the ideal parameters for attaining the optimum tensile performance. A number of experiments were carried out using the L9 orthogonal array. Through the largest ultimate tensile strength (sigma ult\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma_{{{\text{ult}}}}$$\end{document}), failure strain (epsilon f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon_{{\text{f}}}$$\end{document}), tensile modulus (E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document}), and toughness modulus (UT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{{\text{T}}}$$\end{document}), the optimal parameters were established. The analysis demonstrated that the studied parameters significantly impact the tensile performance of PLA+. According to the accomplished analysis, infill density has the largest influence on the value of sigma ult\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma_{{{\text{ult}}}}$$\end{document}, E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document}, and UT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{{\text{T}}} $$\end{document} with an influence percent of 76.072, 85.062, and 55.116%, respectively. However, nozzle temperature has the most significant influence on epsilon f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon_{{\text{f}}}$$\end{document} with 48.668% influence percent. Moreover, the error percentages for sigma ult\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma_{{{\text{ult}}}}$$\end{document}, epsilon f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon_{{\text{f}}}$$\end{document}, E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document}, and UT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{{\text{T}}}$$\end{document} based on the confirmation tests are 2.945, 13.051, 6.480, and 10.520%, respectively.
引用
收藏
页码:1879 / 1895
页数:17
相关论文
共 69 条
[1]   Biodegradable 3D printed polylactic acid structures for different engineering applications: effect of infill pattern and density [J].
Abd El Aal, Mohamed I. ;
Allah, Mahmoud M. Awd ;
Abd Alaziz, Shady A. ;
Abd El-baky, Marwa A. .
JOURNAL OF POLYMER RESEARCH, 2024, 31 (01)
[2]   Carbon-glass reinforced epoxy hybrid composites for crashworthy structural applications [J].
Abd El Aal, Mohamed Ibrahim ;
Allah, Mahmoud M. Awd M. ;
Abd El-baky, Marwa A. .
POLYMER COMPOSITES, 2023, 44 (05) :2910-2924
[3]   Lightweight cost-effective hybrid materials for energy absorption applications [J].
Abd El-baky, Marwa A. ;
Allah, Mahmoud M. Awd ;
Kamel, Madeha ;
Abd-Elaziem, Walaa .
SCIENTIFIC REPORTS, 2022, 12 (01)
[4]   Energy Absorption Performance of 3D-Printed Windowed Structures Under Quasi-Static Axial Loading Condition [J].
Abd El-Halim, Mahmoud F. ;
Allah, Mahmoud M. Awd ;
Abbas, Mohamed A. ;
Mousa, Ahmed A. ;
Mahmoud, Samy F. ;
Abd El-baky, Marwa A. .
FIBERS AND POLYMERS, 2025, 26 (01) :317-335
[5]   Axial Crashworthiness Characterization of Bio-Inspired 3D-Printed Gyroid Structure Tubes: Cutouts Effect [J].
Abd El-Halim, Mahmoud F. ;
Awd Allah, Mahmoud M. ;
Almuflih, Ali Saeed ;
Abd El-baky, Marwa A. .
FIBERS AND POLYMERS, 2024, 25 (08) :3099-3114
[6]   Particle-Reinforced Polymer Matrix Composites (PMC) Fabricated by 3D Printing [J].
Abd-Elaziem, Walaa ;
Khedr, Mahmoud ;
Abd-Elaziem, Abd-Elrahim ;
Allah, Mahmoud M. Awd ;
Mousa, Ahmed A. ;
Yehia, Hossam M. ;
Daoush, Walid M. ;
El-Baky, Marwa A. Abd .
JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2023, 33 (12) :3732-3749
[7]   Fatigue behavior of pure polypropylene and recycled polypropylene reinforced with short glass fiber [J].
Abdelhaleem, Ayman M. M. ;
Megahed, M. ;
Saber, D. .
JOURNAL OF COMPOSITE MATERIALS, 2018, 52 (12) :1633-1640
[8]   Mechanical properties of 3D printed polymeric Gyroid cellular structures: Experimental and finite element study [J].
Abueidda, Diab W. ;
Elhebeary, Mohamed ;
Shiang, Cheng-Shen ;
Pang, Siyuan ;
Abu Al-Rub, Rashid K. ;
Jasiuk, Iwona M. .
MATERIALS & DESIGN, 2019, 165
[9]   Nature-Inspired Lightweight Cellular Co-Continuous Composites with Architected Periodic Gyroidal Structures [J].
Al-Ketan, Oraib ;
Soliman, Ahmad ;
AlQubaisi, Ayesha M. ;
Abu Al-Rub, Rashid K. .
ADVANCED ENGINEERING MATERIALS, 2018, 20 (02)
[10]   The Influence of Raster Angle and Moisture Content on the Mechanical Properties of PLA Parts Produced by Fused Deposition Modeling [J].
Algarni, Mohammed .
POLYMERS, 2021, 13 (02) :1-12