Minimal compact operators, subdifferential of the maximum eigenvalue and semi-definite programming

被引:0
作者
Bottazzi, Tamara [1 ,2 ]
Varela, Alejandro [3 ,4 ]
机构
[1] Univ Nacl Rio Negro, CITECCA, Sede Andina, RA-8400 San Carlos De Bariloche, Argentina
[2] Consejo Nacl Invest Cient & Tecn, RA-1425 Buenos Aires, Argentina
[3] Inst Argentino Matemat Alberto P Calderon, Saavedra 15 3er Piso,C1083ACA, Buenos Aires, Argentina
[4] Univ Nacl Gral Sarmiento, Inst Ciencias, JM Gutierrez 1150,B1613GSX, RA-B1613GSX Los Polvorines, Argentina
关键词
Minimal operators; Subdifferential of eigenvalues; Moment of a subspace; Semi-definite programming;
D O I
10.1016/j.laa.2025.03.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We formulate the issue of minimality of self-adjoint operators on a complex Hilbert space as a semi-definite problem, linking the work by Overton in [18] to the characterization of minimal hermitian matrices. This motivates us to investigate the relationship between minimal self-adjoint operators and the subdifferential of the maximum eigenvalue, initially for matrices and subsequently for compact operators. In order to do it we obtain new formulas of subdifferentials of maximum eigenvalues of compact operators that become useful in these optimization problems. Additionally, we provide formulas for the minimizing diagonals of rank one self-adjoint operators, a result that might be applied for numerical large-scale eigenvalue optimization. (c) 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:1 / 31
页数:31
相关论文
共 24 条
[1]   A characterization of minimal Hermitian matrices [J].
Andruchow, E. ;
Larotonda, G. ;
Recht, L. ;
Varela, A. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (07) :2366-2374
[2]   Minimal matrices and the corresponding minimal curves on flag manifolds in low dimension [J].
Andruchow, Esteban ;
Mata-Lorenzo, Luis E. ;
Mendoza, Alberto ;
Recht, Lazaro ;
Varela, Alejandro .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (8-9) :1906-1928
[3]   Characterization of Birkhoff-James orthogonality [J].
Bhattacharyya, Tirthankar ;
Grover, Priyanka .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 407 (02) :350-358
[4]   Minimal length curves in unitary orbits of a Hermitian compact operator [J].
Bottazzi, T. ;
Varela, A. .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2016, 45 :1-22
[5]   Minimal self-adjoint compact operators, moment of a subspace and joint numerical range [J].
Bottazzi, Tamara ;
Varela, Alejandro .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 528 (02)
[6]   Best approximation by diagonal compact operators [J].
Bottazzi, Tamara ;
Varela, Alejandro .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (10) :3044-3056
[7]  
Bottazzi Tamara, 2021, Differ. Geom. Appl., V77
[8]  
Boyd S., 2004, Convex optimization, DOI 10.1017/CBO9780511804441
[9]  
Clarke F. H., 1990, Optimization and Nonsmooth Analysis
[10]  
CLARKE FH, 1998, GRAD TEXT M, V178, P1