A new method for finding more symmetry relations of Feynman integrals

被引:0
作者
Wu, Zihao [1 ]
Zhang, Yang [2 ,3 ]
机构
[1] UCAS, Hangzhou Inst Adv Study, Sch Fundamental Phys & Math Sci, Hangzhou 310024, Peoples R China
[2] Univ Sci & Technol China, Dept Phys, Hefei 230026, Peoples R China
[3] Peng Huanwu Ctr Fundamental Theory, Hefei 230026, Peoples R China
关键词
Feynman integral; Symmetry; EXPLICIT SOLUTIONS; MASTER INTEGRALS; CANONICAL BASIS; PARTS; TOOL; REDUCTION; EPSILON;
D O I
10.1016/j.cpc.2025.109681
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We introduce a new method for deriving Feynman integral symmetry relations. By solving the ansatz of momentum transformation in the field of rational functions rather than constants, this method can sometimes find more symmetry relations, compared to some state-of-the-art software. The new method may help to further decrease the number of unique sectors in an integral family. Well-chosen gauge conditions are implemented in this method for the efficient symmetry searching.
引用
收藏
页数:10
相关论文
共 99 条
[1]  
Anastasiou C, 2004, J HIGH ENERGY PHYS
[2]   Magnus and Dyson series for Master Integrals [J].
Argeri, Mario ;
Di Vita, Stefano ;
Mastrolia, Pierpaolo ;
Mirabella, Edoardo ;
Schlenk, Johannes ;
Schubert, Ulrich ;
Tancredi, Lorenzo .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (03)
[3]  
Badger S, 2024, Arxiv, DOI arXiv:2404.12325
[4]  
Baikov P.A., 1996, arXiv
[5]   Explicit solutions of the 3-loop vacuum integral recurrence relations [J].
Baikov, PA .
PHYSICS LETTERS B, 1996, 385 (1-4) :404-410
[7]   A practical criterion of irreducibility of multi-loop Feynman integrals [J].
Baikov, PA .
PHYSICS LETTERS B, 2006, 634 (2-3) :325-329
[8]   Integration-by-parts reductions of Feynman integrals using Singular and GPI-Space [J].
Bendle, Dominik ;
Boehm, Janko ;
Decker, Wolfram ;
Georgoudis, Alessandro ;
Pfreundt, Franz-Josef ;
Rahn, Mirko ;
Wasser, Pascal ;
Zhang, Yang .
JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (02)
[9]   Asymptotic expansion of Feynman integrals near threshold [J].
Beneke, M ;
Smirnov, VA .
NUCLEAR PHYSICS B, 1998, 522 (1-2) :321-344
[10]   Feynman integral relations from parametric annihilators [J].
Bitoun, Thomas ;
Bogner, Christian ;
Klausen, Rene Pascal ;
Panzer, Erik .
LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (03) :497-564