Lipopeptide-mediated delivery of CRISPR/Cas9 ribonucleoprotein complexes for gene editing and correction

被引:0
作者
Oktem, Mert [1 ]
Nguyen, Thai Hoang [1 ]
Bosman, Esmeralda D. C. [1 ]
Fens, Marcel H. A. M. [1 ]
Caiazzo, Massimiliano [1 ,2 ]
Mastrobattista, Enrico [1 ]
Lei, Zhiyong [3 ]
de Jong, Olivier G. [1 ]
机构
[1] Univ Utrecht, Utrecht Inst Pharmaceut Sci UIPS, Fac Sci, Dept Pharmaceut, NL-3584 CG Utrecht, Netherlands
[2] Univ Naples Federico II, Dept Mol Med & Med Biotechnol, I-80131 Naples, Italy
[3] Univ Med Ctr Utrecht, CDL Res, NL-3584 CX Utrecht, Netherlands
关键词
Cell-penetrating peptides; Fatty-acid modifications; CRISPR-Cas9; Gene editing; Intramuscular delivery; IN-VIVO DELIVERY; CAS9; RIBONUCLEOPROTEIN; CATIONIC LIPIDS; NUCLEIC-ACIDS; GENOME; DNA; CRISPR-CAS9; PEPTIDES; NANOPARTICLE; PROGRESS;
D O I
10.1016/j.jconrel.2025.113854
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
CRISPR/Cas gene editing is a highly promising technology for the treatment and even potential cure of genetic diseases. One of the major challenges for its therapeutic use is finding safe and effective vehicles for intracellular delivery of the CRISPR/Cas9 ribonucleoprotein (RNP) complex. In this study, we tested and characterized a series of novel fatty acid-modified versions of a previously reported Cas9 RNP carrier, consisting of a complex of the cell-penetrating peptide (CPP) LAH5 with Cas9 RNP and homology-directed DNA repair templates. Comparative experiments demonstrated that RNP/peptide nanocomplexes showed various improvements depending on the type of fatty acid modification. These improvements included enhanced stability in serum, improved membrane disruption capability and increased transfection efficacy. Cas9 RNP/oleic acid LAH5 peptide nanocomplexes showed the overall best performance for both gene editing and correction. Moreover, Cas9 RNP/oleic acid LAH5 nanocomplexes significantly protected the Cas9 protein cargo from enzymatic protease digestion. In addition, in vivo testing demonstrated successful gene editing after intramuscular administration. Despite the inherent barriers of the tightly organized muscle tissues, we achieved approximately 10 % gene editing in the skeletal muscle tissues when targeting the CAG-tdTomato locus in the transgenic Ai9 Cre-LoxP reporter mouse strain and 7 % gene editing when targeting the Ccr5 gene, without any observable short-term toxicity. In conclusion, the oleic acid-modified LAH5 peptide is an effective delivery platform for direct Cas9/ RNP delivery, and holds great potential for the development of new CRISPR/Cas9-based therapeutic applications for the treatment of genetic diseases.
引用
收藏
页数:18
相关论文
共 86 条
[1]   Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors [J].
Anzalone, Andrew V. ;
Koblan, Luke W. ;
Liu, David R. .
NATURE BIOTECHNOLOGY, 2020, 38 (07) :824-844
[2]   In vivo delivery of CRISPR-Cas9 therapeutics: Progress and challenges [J].
Behr, Matthew ;
Zhou, Jing ;
Xu, Bing ;
Zhang, Hongwei .
ACTA PHARMACEUTICA SINICA B, 2021, 11 (08) :2150-2171
[3]   CRISPR/Cas9 gene editing: New hope for Alzheimer's disease therapeutics [J].
Bhardwaj, Shanu ;
Kesari, Kavindra Kumar ;
Rachamalla, Mahesh ;
Mani, Shalini ;
Ashraf, Ghulam Md ;
Jha, Saurabh Kumar ;
Kumar, Pravir ;
Ambasta, Rashmi K. ;
Dureja, Harish ;
Devkota, Hari Prasad ;
Gupta, Gaurav ;
Chellappan, Dinesh Kumar ;
Singh, Sachin Kumar ;
Dua, Kamal ;
Ruokolainen, Janne ;
Kamal, Mohammad Amjad ;
Ojha, Shreesh ;
Jha, Niraj Kumar .
JOURNAL OF ADVANCED RESEARCH, 2022, 40 :207-221
[4]   Easy quantitative assessment of genome editing by sequence trace decomposition [J].
Brinkman, Eva K. ;
Chen, Tao ;
Amendola, Mario ;
van Steensel, Bas .
NUCLEIC ACIDS RESEARCH, 2014, 42 (22)
[5]   Rationally designed nanoparticle delivery of Cas9 ribonucleoprotein for effective gene editing [J].
Chae, Se-Youl ;
Jeong, Euihwan ;
Kang, Seounghun ;
Yim, Yeajee ;
Kim, Jin-Soo ;
Min, Dal-Hee .
JOURNAL OF CONTROLLED RELEASE, 2022, 345 :108-119
[6]   A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing [J].
Chen, Guojun ;
Abdeen, Amr A. ;
Wang, Yuyuan ;
Shahi, Pawan K. ;
Robertson, Samantha ;
Xie, Ruosen ;
Suzuki, Masatoshi ;
Pattnaik, Bikash R. ;
Saha, Krishanu ;
Gong, Shaoqin .
NATURE NANOTECHNOLOGY, 2019, 14 (10) :974-+
[7]   Amphiphilic cationic lipopeptides with RGD sequences as gene vectors [J].
Chen, Jing-Xiao ;
Wang, Hui-Yuan ;
Quan, Chang-Yun ;
Xu, Xiao-Ding ;
Zhang, Xian-Zheng ;
Zhuo, Ren-Xi .
ORGANIC & BIOMOLECULAR CHEMISTRY, 2010, 8 (14) :3142-3148
[8]   Prime editing for precise and highly versatile genome manipulation [J].
Chen, Peter J. ;
Liu, David R. .
NATURE REVIEWS GENETICS, 2023, 24 (03) :161-177
[9]   A multifunctional AAV-CRISPR-Cas9 and its host response [J].
Chew, Wei Leong ;
Tabebordbar, Mohammadsharif ;
Cheng, Jason K. W. ;
Mali, Prashant ;
Wu, Elizabeth Y. ;
Ng, Alex H. M. ;
Zhu, Kexian ;
Wagers, Amy J. ;
Church, George M. .
NATURE METHODS, 2016, 13 (10) :868-+
[10]   CRISPR technologies for the treatment of Duchenne muscular dystrophy [J].
Choi, Eunyoung ;
Koo, Taeyoung .
MOLECULAR THERAPY, 2021, 29 (11) :3179-3191