Interfacial Ohmic contact engineering in MoSe2/Ti3C2 Heterostructures for high-performance sodium-ion capacitors

被引:0
作者
Xiao, Yuanhua [1 ]
Yuan, Gaozhan [1 ]
Su, Dangcheng [2 ]
Fan, Yuanyuan [1 ]
Wang, Haoshuang [1 ]
Ge, Xutao [1 ]
Zhou, Jun [1 ]
Fang, Shaoming [1 ]
Wang, Xuezhao [3 ]
机构
[1] Zhengzhou Univ Light Ind, Key Lab Surface & Interface Sci & Technol, Zhengzhou 455002, Peoples R China
[2] Luoyang Inst Sci & Technol, Sch Mat Sci & Engn, Henan Prov Int Joint Lab Mat Solar Energy Convers, Luoyang 471023, Peoples R China
[3] Zhengzhou Univ Technol, Coll Food & Chem, Zhengzhou 450044, Peoples R China
基金
中国博士后科学基金;
关键词
Sodium-ion capacitor; Ohmic contact; MoSe2; Heterostructures; NANOSHEETS; MOSE2;
D O I
10.1016/j.jelechem.2025.119181
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The development of sodium-ion capacitors (SICs) is hindered by the kinetic mismatch between sluggish ion diffusion in battery-type anodes and rapid surface reactions in capacitive cathodes. Herein, a MoSe2/Ti3C2 heterostructure with ohmic contact interfaces is synthesized via a facile solvothermal method, which simultaneously improve charge transfer kinetics and structural stability. Density functional theory (DFT) calculations reveal that the MoSe2/Ti3C2 interface reduces Na+ diffusion energy barriers while providing efficient electron transport pathways. Notably, the MoSe2/Ti3C2 heterostructure as a sodium-ion battery (SIB) anode delivers a high reversible capacity of 506.2 mAh g-1 at 0.1 A g-1 and retains a capacity of 314.2 mAh g-1 at 10.0 A g-1, demonstrating exceptional rate capability. When coupled with a commercial activated carbon (AC) cathode, the SIC device achieves energy densities of 101.3 Wh kg-1 at 297.8 W kg-1, retaining 26.1 Wh kg-1 even at 11.2 kW kg-1. Additionally, the device exhibits outstanding cycling stability with 97.5 % capacity retention after 5500 cycles. These results highlight the critical role of ohmic contact engineering in optimizing hybrid electrode design and provide a pathway for advancing high-performance SICs.
引用
收藏
页数:9
相关论文
共 44 条
[1]   High energy Li-ion capacitors using two-dimensional TiSe0.6S1.4 as insertion host [J].
Chaturvedi, Apoorva ;
Hu, Peng ;
Kloc, Christian ;
Lee, Yun-Sung ;
Aravindan, Vanchiappan ;
Madhavi, Srinivasan .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (37) :19819-19825
[2]   Rapid determination of solid-state diffusion coefficients in Li-based batteries via intermittent current interruption method [J].
Chien, Yu-Chuan ;
Liu, Haidong ;
Menon, Ashok S. ;
Brant, William R. ;
Brandell, Daniel ;
Lacey, Matthew J. .
NATURE COMMUNICATIONS, 2023, 14 (01)
[3]   Large-Scale Synthesis of Graphene-Like MoSe2 Nanosheets for Efficient Hydrogen Evolution Reaction [J].
Dai, Chu ;
Zhou, Zhaoxin ;
Tian, Chen ;
Li, Yong ;
Yang, Chao ;
Gao, Xueyun ;
Tian, Xike .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (03) :1974-1981
[4]   Identifying the origin and contribution of pseudocapacitive sodium ion storage in tungsten disulphide nanosheets for application in sodium-ion capacitors [J].
Ding, Chunxia ;
Huang, Ting ;
Tao, Yaping ;
Tan, Deming ;
Zhang, Yin ;
Wang, Faxing ;
Yu, Feng ;
Xie, Qingji .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (42) :21010-21017
[5]   Superoxide radicals dominated visible light driven peroxymonosulfate activation using molybdenum selenide (MoSe2) for boosting catalytic degradation of pharmaceuticals and personal care products [J].
Dong, Chencheng ;
Wang, Zhiqiang ;
Ye, Zhichao ;
He, Juhua ;
Zheng, Zexiao ;
Gong, Xueqing ;
Zhang, Jinlong ;
Lo, Irene M. C. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 296
[6]   Zinc selenide/cobalt selenide in nitrogen-doped carbon frameworks as anode materials for high-performance sodium-ion hybrid capacitors [J].
Gao, Lin ;
Cao, Minglei ;
Zhang, Chuankun ;
Li, Jian ;
Zhu, Xiufang ;
Guo, Xingkui ;
Toktarbay, Zhexenbek .
ADVANCED COMPOSITES AND HYBRID MATERIALS, 2024, 7 (05)
[7]   Engineering multiple heterogeneous Co/CoSe/MoSe2 embedded in carbon nanofibers with Co/Mo-Se-C bonding towards high performance sodium ion capacitors [J].
Gao, Lin ;
Ma, Yanan ;
Cao, Minglei ;
Zhang, Chuankun .
VACUUM, 2024, 228
[8]   Hierarchical Hollow-Microsphere Metal-Selenide@Carbon Composites with Rational Surface Engineering for Advanced Sodium Storage [J].
Ge, Peng ;
Li, Sijie ;
Xu, Laiqiang ;
Zou, Kangyu ;
Gao, Xu ;
Cao, Xiaoyu ;
Zou, Guoqiang ;
Hou, Hongshuai ;
Ji, Xiaobo .
ADVANCED ENERGY MATERIALS, 2019, 9 (01)
[9]   Developing High-Performance Metal Selenides for Sodium-Ion Batteries [J].
Hao, Zhiqiang ;
Shi, Xiaoyan ;
Yang, Zhuo ;
Li, Lin ;
Chou, Shu-Lei .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (51)
[10]   Toward Rapid-Charging Sodium-Ion Batteries using Hybrid-Phase Molybdenum Sulfide Selenide-Based Anodes [J].
Huang, Yongxin ;
Wang, Ziheng ;
Guan, Minrong ;
Wu, Feng ;
Chen, Renjie .
ADVANCED MATERIALS, 2020, 32 (40)