Multi-Sensor Fusion for Quadruped Robot State Estimation Using Invariant Filtering and Smoothing

被引:0
作者
Nistico, Ylenia [1 ]
Kim, Hajun [2 ]
Soares, Joao Carlos Virgolino [1 ]
Fink, Geoff [1 ,3 ]
Park, Hae-Won [2 ]
Semini, Claudio [1 ]
机构
[1] Ist Italiano Tecnol IIT, Dynam Legged Syst DLS, I-16163 Genoa, Italy
[2] Korean Adv Inst Sci & Technol KAIST, Dynam Robot Control & Design DRCD Lab, Daejeon 34141, South Korea
[3] Thompson Rivers Univ, Dept Engn, Kamloops, BC V2C 0C8, Canada
关键词
Robots; Laser radar; Robot sensing systems; Legged locomotion; State estimation; Vectors; Odometry; Kinematics; Global Positioning System; Fuses; Sensor fusion; localization; legged robots; ODOMETRY;
D O I
10.1109/LRA.2025.3564711
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This letter introduces two multi-sensor state estimation frameworks for quadruped robots, built on the Invariant Extended Kalman Filter (InEKF) and Invariant Smoother (IS). The proposed methods, named E-InEKF and E-IS, fuse kinematics, IMU, LiDAR, and GPS data to mitigate position drift, particularly along the z-axis, a common issue in proprioceptive-based approaches. We derived observation models that satisfy group-affine properties to integrate LiDAR odometry and GPS into InEKF and IS. LiDAR odometry is incorporated using Iterative Closest Point (ICP) registration on a parallel thread, preserving the computational efficiency of proprioceptive-based state estimation. We evaluate E-InEKF and E-IS with and without exteroceptive sensors, benchmarking them against LiDAR-based odometry methods in indoor and outdoor experiments using the KAIST HOUND2 robot. Our methods achieve lower Relative Position Errors (RPE) and significantly reduce Absolute Trajectory Error (ATE), with improvements of up to 28% indoors and 40% outdoors compared to LIO-SAM and FAST-LIO2. Additionally, we compare E-InEKF and E-IS in terms of computational efficiency and accuracy.
引用
收藏
页码:6296 / 6303
页数:8
相关论文
共 30 条
[11]   STEP: State Estimator for Legged Robots Using a Preintegrated Foot Velocity Factor [J].
Kim, Yeeun ;
Yu, Byeongho ;
Lee, Eungchang Mason ;
Kim, Joon-ha ;
Park, Hae-won ;
Myung, Hyun .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) :4456-4463
[12]  
Lin TY, 2021, Arxiv, DOI arXiv:2106.15713
[13]   MUSE: A Real-Time Multi-Sensor State Estimator for Quadruped Robots [J].
Nistico, Ylenia ;
Soares, Joao Carlos Virgolino ;
Amatucci, Lorenzo ;
Fink, Geoff ;
Semini, Claudio .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (05) :4620-4627
[14]   Leg-KILO: Robust Kinematic-Inertial-Lidar Odometry for Dynamic Legged Robots [J].
Ou, Guangjun ;
Li, Dong ;
Li, Hanmin .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (10) :8194-8201
[15]   KalmanNet: Neural Network Aided Kalman Filtering for Partially Known Dynamics [J].
Revach, Guy ;
Shlezinger, Nir ;
Ni, Xiaoyong ;
Escoriza, Adria Lopez ;
van Sloun, Ruud J. G. ;
Eldar, Yonina C. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 :1532-1547
[16]   Proprioceptive State Estimation for Quadruped Robots using Invariant Kalman Filtering and Scale-Variant Robust Cost Functions [J].
Santana, Hilton Marques Souza ;
Soares, Joao Carlos Virgolino ;
Nistico, Ylenia ;
Meggiolaro, Marco Antonio ;
Semini, Claudio .
2024 IEEE-RAS 23RD INTERNATIONAL CONFERENCE ON HUMANOID ROBOTS, HUMANOIDS, 2024, :213-220
[17]   OptiState: State Estimation of Legged Robots using Gated Networks with Transformer-based Vision and Kalman Filtering [J].
Schperberg, Alexander ;
Tanaka, Yusuke ;
Mowlavi, Saviz ;
Xu, Feng ;
Balaji, Bharathan ;
Hong, Dennis .
2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2024, 2024, :6314-6320
[18]   LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping [J].
Shan, Tixiao ;
Englot, Brendan ;
Meyers, Drew ;
Wang, Wei ;
Ratti, Carlo ;
Rus, Daniela .
2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, :5135-5142
[19]   Design of KAIST HOUND, a Quadruped Robot Platform for Fast and Efficient Locomotion with Mixed-Integer Nonlinear Optimization of a Gear Train [J].
Shin, Young-Ha ;
Hong, Seungwoo ;
Woo, Sangyoung ;
Choe, JongHun ;
Son, Harim ;
Kim, Gijeong ;
Kim, Joon-Ha ;
Lee, KangKyu ;
Hwangbo, Jemin ;
Park, Hae-Won .
2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, :6614-6620
[20]  
Solà J, 2021, Arxiv, DOI arXiv:1812.01537