Multi-Sensor Fusion for Quadruped Robot State Estimation Using Invariant Filtering and Smoothing

被引:0
作者
Nistico, Ylenia [1 ]
Kim, Hajun [2 ]
Soares, Joao Carlos Virgolino [1 ]
Fink, Geoff [1 ,3 ]
Park, Hae-Won [2 ]
Semini, Claudio [1 ]
机构
[1] Ist Italiano Tecnol IIT, Dynam Legged Syst DLS, I-16163 Genoa, Italy
[2] Korean Adv Inst Sci & Technol KAIST, Dynam Robot Control & Design DRCD Lab, Daejeon 34141, South Korea
[3] Thompson Rivers Univ, Dept Engn, Kamloops, BC V2C 0C8, Canada
关键词
Robots; Laser radar; Robot sensing systems; Legged locomotion; State estimation; Vectors; Odometry; Kinematics; Global Positioning System; Fuses; Sensor fusion; localization; legged robots; ODOMETRY;
D O I
10.1109/LRA.2025.3564711
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This letter introduces two multi-sensor state estimation frameworks for quadruped robots, built on the Invariant Extended Kalman Filter (InEKF) and Invariant Smoother (IS). The proposed methods, named E-InEKF and E-IS, fuse kinematics, IMU, LiDAR, and GPS data to mitigate position drift, particularly along the z-axis, a common issue in proprioceptive-based approaches. We derived observation models that satisfy group-affine properties to integrate LiDAR odometry and GPS into InEKF and IS. LiDAR odometry is incorporated using Iterative Closest Point (ICP) registration on a parallel thread, preserving the computational efficiency of proprioceptive-based state estimation. We evaluate E-InEKF and E-IS with and without exteroceptive sensors, benchmarking them against LiDAR-based odometry methods in indoor and outdoor experiments using the KAIST HOUND2 robot. Our methods achieve lower Relative Position Errors (RPE) and significantly reduce Absolute Trajectory Error (ATE), with improvements of up to 28% indoors and 40% outdoors compared to LIO-SAM and FAST-LIO2. Additionally, we compare E-InEKF and E-IS in terms of computational efficiency and accuracy.
引用
收藏
页码:6296 / 6303
页数:8
相关论文
共 30 条
[1]   The Invariant Extended Kalman Filter as a Stable Observer [J].
Barrau, Axel ;
Bonnabel, Silvere .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (04) :1797-1812
[2]  
Bloesch M., 2013, Robotics, V17, P17, DOI [10.7551/mitpress/9816.003.0008, DOI 10.7551/MITPRESS/9816.003.0008]
[3]  
Bloesch M, 2013, IEEE INT C INT ROBOT, P6058, DOI 10.1109/IROS.2013.6697236
[4]   Pronto: A Multi-Sensor State Estimator for Legged Robots in Real-World Scenarios [J].
Camurri, Marco ;
Ramezani, Milad ;
Nobili, Simona ;
Fallon, Maurice .
FRONTIERS IN ROBOTICS AND AI, 2020, 7
[5]  
Chauchat P, 2018, IEEE INT C INT ROBOT, P1703, DOI 10.1109/IROS.2018.8594068
[6]  
De Luca A, 2005, IEEE INT CONF ROBOT, P999
[7]   Invariant Filtering for Legged Humanoid Locomotion on a Dynamic Rigid Surface [J].
Gao, Yuan ;
Yuan, Chengzhi ;
Gu, Yan .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2022, 27 (04) :1900-1909
[8]   Contact-aided invariant extended Kalman filtering for robot state estimation [J].
Hartley, Ross ;
Ghaffari, Maani ;
Eustice, Ryan M. ;
Grizzle, Jessy W. .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2020, 39 (04) :402-430
[9]   Legged Robot State Estimation With Dynamic Contact Event Information [J].
Kim, Joon-Ha ;
Hong, Seungwoo ;
Ji, Gwanghyeon ;
Jeon, Seunghun ;
Hwangbo, Jemin ;
Oh, Jun-Ho ;
Park, Hae-Won .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (04) :6733-6740
[10]  
Kim J, 2024, Arxiv, DOI arXiv:2412.05839