A data fusion approach to enhancing runoff simulation in a semi-arid river basin

被引:0
作者
Jahanshahi, Afshin [1 ,2 ]
Asadi, Haniyeh [1 ,3 ]
Gupta, Hoshin [4 ]
机构
[1] Sari Agr Sci & Nat Resources Univ SANRU, Sari, Iran
[2] Univ Naples Federico II, Dept Civil Architectural & Environm Engn, Naples, Italy
[3] Univ Cent Asia, Mt Soc Res Inst, Khorog 736000, Tajikistan
[4] Univ Arizona, Dept Hydrol & Atmospher Sci, Tucson, AZ 85721 USA
关键词
Conceptual models; Data fusion; Physically-based models; Rainfall-runoff modeling; ARTIFICIAL NEURAL-NETWORKS; SUPPORT VECTOR REGRESSION; HYDROLOGICAL MODEL; HYBRID APPROACH; WATER-QUALITY; RAINFALL; UNCERTAINTY; FLOW; SENSITIVITY; CATCHMENT;
D O I
10.1016/j.envsoft.2025.106468
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Accurate streamflow modeling is crucial for water resource management in dry and semi-arid regions. This study proposes a novel approach combining machine learning (ML) with conceptual and physically-based models to address of traditional model limitations in Iran's semi-arid Jazmourian River Basin. The HBV and SWAT hydrological models are used for conceptual and physically-based simulations, respectively, while Support vector regression (SVR) and multilayer perceptron (MLP) integrate hydrological model outputs with hydro-meteorological variables. Using hydroclimatic data from two periods-1963-1989 (dry phase) and 1993-2019 (wetter phase)-the study evaluates model performance under contrasting conditions. The proposed "fusion SVR" and "hybrid SVR with whale optimization algorithm" (SVR-WOA) models demonstrate improved accuracy in simulating runoff peaks. The SVR-WOA model achieves a 26.17 % performance improvement over SWAT for 1993-2019 and 25.36 % for 1963-1989, with RMSE values of 9.90 m3/s and 10.33 m3/s, respectively. This highlights hybrid modeling's potential for diverse hydrological challenges.
引用
收藏
页数:22
相关论文
共 138 条
[1]   Global soil, landuse, evapotranspiration, historical and future weather databases for SWAT Applications [J].
Abbaspour, K. C. ;
Vaghefi, S. A. Shraf ;
Yang, H. ;
Srinivasan, R. .
SCIENTIFIC DATA, 2019, 6 (1)
[2]   A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model [J].
Abbaspour, K. C. ;
Rouholahnejad, E. ;
Vaghefi, S. ;
Srinivasan, R. ;
Yang, H. ;
Klove, B. .
JOURNAL OF HYDROLOGY, 2015, 524 :733-752
[3]   Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT [J].
Abbaspour, Karim C. ;
Yang, Jing ;
Maximov, Ivan ;
Siber, Rosi ;
Bogner, Konrad ;
Mieleitner, Johanna ;
Zobrist, Juerg ;
Srinivasan, Raghavan .
JOURNAL OF HYDROLOGY, 2007, 333 (2-4) :413-430
[4]   Sensitivity and uncertainty analysis of the conceptual HBV rainfall-runoff model: Implications for parameter estimation [J].
Abebe, Nibret A. ;
Ogden, Fred L. ;
Pradhan, Nawa R. .
JOURNAL OF HYDROLOGY, 2010, 389 (3-4) :301-310
[5]   Separation of the Impact of Landuse/Landcover Change and Climate Change on Runoff in the Upstream Area of the Yangtze River, China [J].
Ahmed, Naveed ;
Wang, Genxu ;
Booij, Martijn J. ;
Xiangyang, Sun ;
Hussain, Fiaz ;
Nabi, Ghulam .
WATER RESOURCES MANAGEMENT, 2022, 36 (01) :181-201
[6]   Monthly streamflow forecasting by machine learning methods using dynamic weather prediction model outputs over Iran [J].
Akbarian, Mohammad ;
Saghafian, Bahram ;
Golian, Saeed .
JOURNAL OF HYDROLOGY, 2023, 620
[7]  
Aliye Mohammedreshid A., 2020, Open Journal of Modern Hydrology, V10, P105, DOI 10.4236/ojmh.2020.104007
[8]  
Allen R.G., 1998, FAO IRRIGATION DRAIN
[9]   Understanding spatio-temporal rainfall-runoff changes in a semi-arid region [J].
Aryal, Santosh K. ;
Silberstein, Richard P. ;
Fu, Guobin ;
Hodgson, Geoff ;
Charles, Stephen P. ;
McFarlane, Don .
HYDROLOGICAL PROCESSES, 2020, 34 (11) :2510-2530
[10]   Estimating index of sediment connectivity using a smart data-driven model [J].
Asadi, Haniyeh ;
Dastorani, Mohammad T. ;
Sidle, Roy C. .
JOURNAL OF HYDROLOGY, 2023, 620