Covalent organic frameworks with silsesquioxane and quinoline units as multifunctional separator modifier for stable Lithium-Sulfur batteries

被引:1
作者
Sun, Xiangfeng [1 ,2 ,3 ]
Song, Xuan [1 ,2 ]
Li, Dongxia [3 ]
Xue, Yuxin [3 ]
Luo, Chongxian [2 ]
Lin, Qiong [2 ,3 ]
Gui, Xuefeng [1 ,2 ,3 ,4 ,5 ]
Xu, Kai [1 ,2 ]
机构
[1] Chinese Acad Sci, Guangzhou Inst Chem, Guangzhou 510650, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] CAS Engn Lab Special Fine Chem, Guangzhou 510650, Peoples R China
[4] CASH GCC Shaoguan Res Inst Adv Mat, Shaoguan 512000, Peoples R China
[5] CASH GCC Nanxiong Res Inst Adv Mat Co Ltd, Nanxiong 512000, Peoples R China
关键词
Silsesquioxane cage-like; Covalent organic frameworks; Lithium-sulfur batteries; Cooperative interface; Quinoline-linked; LI-S BATTERIES; SOLID ELECTROLYTES; POSS; DESIGN; SAFE;
D O I
10.1016/j.jpowsour.2025.236994
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The realization of practical lithium-sulfur (Li-S) batteries necessitates simultaneous manipulation the interfacial chemistry of sulfur cathode, lithium anodes and conduction paths to tackle the challenges associated with the electrochemical reversibility and conversion kinetics. Designing functional interlayers with well-defined directional channels and accessible active sites holds significant potential in this context. Here, we demonstrate an implementation of constructing quinoline-linked covalent organic frameworks (QSQ-COF) that relies on the selection of silsesquioxane cage-like building blocks and the aza-Diels-Alder cycloaddition approach. This design creates uniquely hierarchical porous channels along with abundant lithiophilic units anchored periodically within, synergistically offering efficient ion/electron conduction and stronger polysulfide trapping in Li-S batteries. Specifically, integrating such hybrid networks as a functional interlayer with separator help attaining boosted redox kinetics of sulfur electrode and improved cycling stability. The mechanically robust interlayer can also guide a homogeneous deposition of Li ion at the metal anode that achieves a smooth surface without dendrite growth. Thus, the full cell assembled with QSQ-COF interlayer demonstrates outstanding electrochemical performance by maintaining a capacity retention rate of 92.35 % after undergoing 200 cycles at a rate of 0.2C, and in Li-Li symmetric cells exhibiting Li+ transfer numbers up to 0.89.
引用
收藏
页数:13
相关论文
共 62 条
[1]   Constructing Cooperative Interface via Bi-Functional COF for Facilitating the Sulfur Conversion and Li+ Dynamics [J].
An, Qi ;
Wang, Lilian ;
Zhao, Genfu ;
Duan, Lingyan ;
Sun, Yongjiang ;
Liu, Qing ;
Mei, Zhiyuan ;
Yang, Yongxin ;
Zhang, Conghui ;
Guo, Hong .
ADVANCED MATERIALS, 2024, 36 (04)
[2]   Exploring Cagelike Silsesquioxane Building Blocks for the Design of Heterometallic Cu4/M4 Architectures [J].
Bilyachenko, Alexey N. ;
Astakhov, Grigorii S. ;
Kulakova, Alena N. ;
Korlyukov, Alexander A. ;
Zubavichus, Yan V. ;
Dorovatovskii, Pavel V. ;
Shul'pina, Lidia S. ;
Shubina, Elena S. ;
Ikonnikov, Nikolay S. ;
Kirillova, Marina V. ;
Zueva, Anna Y. ;
Kirillov, Alexander M. ;
Shul'pin, Georgiy B. .
CRYSTAL GROWTH & DESIGN, 2022, 22 (04) :2146-2157
[3]   Highly-ordered arrangement of Co(OH)F filaments: Planting flower-like Co(OH)F in conductive membrane substrate accelerating Li+ transfer and redox reaction in Li-S batteries [J].
Cai, Guocui ;
Jiang, Helong ;
Chu, Fangyi ;
Li, Xiangcun ;
Jiang, Xiaobin ;
Wu, Xiao ;
He, Gaohong ;
Dai, Yan .
CHEMICAL ENGINEERING JOURNAL, 2023, 454
[4]   Polyhedral Oligomeric Silsesquioxane Hybrid Polymers: Well-Defined Architectural Design and Potential Functional Applications [J].
Chen, Fang ;
Lin, Feng ;
Zhang, Qi ;
Cai, Rong ;
Wu, Yadong ;
Ma, Xiaoyan .
MACROMOLECULAR RAPID COMMUNICATIONS, 2019, 40 (17)
[5]  
Chen Z.S., 2023, Nat. Commun., V14
[6]   Polyoctahedral Silsesquioxane-Nanoparticle Electrolytes for Lithium Batteries: POSS-Lithium Salts and POSS-PEGs [J].
Chinnam, Parameswara Rao ;
Wunder, Stephanie L. .
CHEMISTRY OF MATERIALS, 2011, 23 (23) :5111-5121
[7]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[8]   Metalloporphyrin and Ionic Liquid-Functionalized Covalent Organic Frameworks for Catalytic CO2 Cycloaddition via Visible-Light-Induced Photothermal Conversion [J].
Ding, Luo-Gang ;
Yao, Bing-Jian ;
Wu, Wen-Xiu ;
Yu, Zhi-Gao ;
Wang, Xiao-Yu ;
Kan, Jing-Lan ;
Dong, Yu-Bin .
INORGANIC CHEMISTRY, 2021, 60 (16) :12591-12601
[9]   Mechanisms of the Accelerated Li+ Conduction in MOF-Based Solid-State Polymer Electrolytes for All-Solid-State Lithium Metal Batteries [J].
Duan, Song ;
Qian, Lanting ;
Zheng, Yun ;
Zhu, Yanfei ;
Liu, Xiang ;
Dong, Li ;
Yan, Wei ;
Zhang, Jiujun .
ADVANCED MATERIALS, 2024, 36 (32)
[10]   Towards high energy density Li-S batteries with high sulfur loading: From key issues to advanced strategies [J].
Feng, Yang ;
Wang, Gang ;
Ju, Jingge ;
Zhao, Yixia ;
Kang, Weimin ;
Deng, Nanping ;
Cheng, Bowen .
ENERGY STORAGE MATERIALS, 2020, 32 :320-355