Brain feature maps reveal progressive animal-feature representations in the ventral stream

被引:0
作者
Zhang, Zhanqi [1 ]
Hartmann, Till S. [2 ,3 ]
Born, Richard T. [2 ]
Livingstone, Margaret S. [2 ]
Ponce, Carlos R. [2 ]
机构
[1] Univ Calif San Diego, Dept Comp Sci & Engn, La Jolla, CA USA
[2] Harvard Med Sch, Dept Neurobiol, Boston, MA 02115 USA
[3] Zoox inc, 1149 Chess Dr, Foster City, CA 94404 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
INFEROTEMPORAL CORTEX; FACES; STIMULI;
D O I
10.1126/sciadv.adq7342
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
What are the fundamental principles that inform representation in the primate visual brain? While objects have become an intuitive framework for studying neurons in many parts of cortex, it is possible that neurons follow a more expressive organizational principle, such as encoding generic features present across textures, places, and objects. In this study, we used multielectrode arrays to record from neurons in the early (V1/V2), middle (V4), and later [posterior inferotemporal (PIT) cortex] areas across the visual hierarchy, estimating each neuron's local operation across natural scene via "heatmaps." We found that, while populations of neurons with foveal receptive fields across V1/V2, V4, and PIT responded over the full scene, they focused on salient subregions within object outlines. Notably, neurons preferentially encoded animal features rather than general objects, with this trend strengthening along the visual hierarchy. These results show that the monkey ventral stream is partially organized to encode local animal features over objects, even as early as primary visual cortex.
引用
收藏
页数:15
相关论文
共 45 条
[1]   The neurons that mistook a hat for a face [J].
Arcaro, Michael J. ;
Ponce, Carlos ;
Livingstone, Margaret .
ELIFE, 2020, 9 :1-19
[2]   Seeing faces is necessary for face-domain formation [J].
Arcaro, Michael J. ;
Schade, Peter F. ;
Vincent, Justin L. ;
Ponce, Carlos R. ;
Livingstone, Margaret S. .
NATURE NEUROSCIENCE, 2017, 20 (10) :1404-+
[3]   A hierarchical, retinotopic proto-organization of the primate visual system at birth [J].
Arcaro, Michael J. ;
Livingstone, Margaret S. .
ELIFE, 2017, 6
[4]   COCO-Stuff: Thing and Stuff Classes in Context [J].
Caesar, Holger ;
Uijlings, Jasper ;
Ferrari, Vittorio .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :1209-1218
[5]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[6]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807
[7]   Resynthesizing behavior through phylogenetic refinement [J].
Cisek, Paul .
ATTENTION PERCEPTION & PSYCHOPHYSICS, 2019, 81 (07) :2265-2287
[8]   Neural Mechanisms for Interacting with a World Full of Action Choices [J].
Cisek, Paul ;
Kalaska, John F. .
ANNUAL REVIEW OF NEUROSCIENCE, VOL 33, 2010, 33 :269-298
[9]  
Crowston K., 2012, Shaping the Future of ICT Res. Methods and Approaches, V389, P210, DOI [DOI 10.1007/978-3-642-35142-6_14, 10.1007/978-3-642-35142-6_14]
[10]  
Dapello J., 2020, Advances in Neural Information Processing Systems, V33, P13073, DOI DOI 10.1101/2020.06.16.154542