Site-specific surface reactivity on SnO2: Evaluating selective atomic layer deposition processes

被引:0
作者
Xu, Jiayi [1 ]
Muir, Mark [2 ]
Kamphaus, Ethan P. [2 ]
Jones, Jessica C. [2 ]
Martinson, Alex B. F. [2 ]
Liu, Cong [1 ]
机构
[1] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
[2] Argonne Natl Lab, Mat Sci Div, Lemont, IL 60439 USA
关键词
Density Functional Theory; Atomic Layer Deposition; Surface Hydration; Phase Diagram; Thermodynamics; TOTAL-ENERGY CALCULATIONS; WATER-ADSORPTION; THIN-FILMS; SNO2(110); PRINCIPLES; ALUMINUM; SPECTRA; GROWTH;
D O I
10.1016/j.apsusc.2025.162966
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Area selective atomic layer deposition (AS-ALD) is a bottom-up synthesis approach with potential for deposition with molecular level precision. The site-specific hydration of metal oxide substrates, combined with surface H2Oselective ALD processes, provides a potentially powerful path to targeted synthesis. Density functional theory (DFT) calculations are used to predict the thermodynamics of ALD precursor reactivity and hydration for (001), (101), (110), and (100) rutile SnO2 facets as a function of temperature. Trimethylaluminum (TMA) and dimethyl aluminum isopropoxide (DMAI) dimers are predicted to react with both dehydrated and hydrated SnO2 (001), (101), and (110) facets at ALD-relevant temperatures, while the SnO2 (100) facet is predicted to be uniquely unreactive with TMA and DMAI monomers as well as dehydrate near 177 degrees C making this facet more amenable to targeted ALD. In situ ellipsometric studies of Al2O3 ALD on polycrystalline SnO2 at 150 degrees C are consistent with the computational predictions of rapid and unselective nucleation, in stark contrast to inhibited and selective ALD on isostructural rutile TiO2.
引用
收藏
页数:9
相关论文
共 48 条
[21]  
Potts S.E., Dingemans G., Lachaud C., Kessels W.M.M., Plasma-enhanced and thermal atomic layer deposition of Al<sub>2</sub>O<sub>3</sub> using dimethylaluminum isopropoxide, [Al(CH<sub>3</sub>)<sub>2</sub>(μ-OiPr)]<sub>2</sub>, as an alternative aluminum precursor, J. Vac. Sci. Technol. A, 30, (2012)
[22]  
Kim H.G., Kim M., Gu B., Khan M.R., Ko B.G., Yasmeen S., Kim C.S., Kwon S., Kim J., Kwon J., Jin K., Cho B., Chun J.S., Shong B., Lee H., Effects of Al precursors on deposition selectivity of atomic layer deposition of Al2O3 using ethanethiol inhibitor, Chem. Mater., 32, pp. 8921-8929, (2020)
[23]  
Weckman T., Laasonen K., First principles study of the atomic layer deposition of alumina by TMA-H<sub>2</sub>O-process, PCCP, 17, pp. 17322-17334, (2015)
[24]  
Kim M., Kim S., Shong B., Adsorption of dimethylaluminum isopropoxide (DMAI) on the Al<sub>2</sub>O<sub>3</sub> surface: a machine-learning potential study, J. Sci.-Adv. Mater. Dev., 9, (2024)
[25]  
Choi J.W., Ham S.Y., Lee S., Shin D.S., Min Y.S., Kim K.C., Unveiled understanding on thermodynamic mechanisms of atomic layer deposition based on trimethylaluminum and water precursors, Ind. Eng. Chem. Res., 59, pp. 13325-13332, (2020)
[26]  
An K.-S., Cho W.-T., Sung K.-W., Lee S.-S., Kim Y.-S., Preparation of Al<sub>2</sub>O<sub>3</sub> thin films by atomic layer deposition using dimethylaluminum isopropoxide and water and their reaction mechanisms, Bull. Kor. Chem. Soc., 24, pp. 1659-1663, (2003)
[27]  
Kresse G., Furthmuller J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, pp. 11169-11186, (1996)
[28]  
Kresse G., Furthmuller J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comp. Mater. Sci., 6, pp. 15-50, (1996)
[29]  
Kresse G., Joubert D., From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, pp. 1758-1775, (1999)
[30]  
Perdew J.P., Burke K., Ernzerhof M., Generalized gradient approximation made simple, Phys. Rev. Lett., 77, pp. 3865-3868, (1996)