Site-specific surface reactivity on SnO2: Evaluating selective atomic layer deposition processes

被引:0
作者
Xu, Jiayi [1 ]
Muir, Mark [2 ]
Kamphaus, Ethan P. [2 ]
Jones, Jessica C. [2 ]
Martinson, Alex B. F. [2 ]
Liu, Cong [1 ]
机构
[1] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
[2] Argonne Natl Lab, Mat Sci Div, Lemont, IL 60439 USA
关键词
Density Functional Theory; Atomic Layer Deposition; Surface Hydration; Phase Diagram; Thermodynamics; TOTAL-ENERGY CALCULATIONS; WATER-ADSORPTION; THIN-FILMS; SNO2(110); PRINCIPLES; ALUMINUM; SPECTRA; GROWTH;
D O I
10.1016/j.apsusc.2025.162966
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Area selective atomic layer deposition (AS-ALD) is a bottom-up synthesis approach with potential for deposition with molecular level precision. The site-specific hydration of metal oxide substrates, combined with surface H2Oselective ALD processes, provides a potentially powerful path to targeted synthesis. Density functional theory (DFT) calculations are used to predict the thermodynamics of ALD precursor reactivity and hydration for (001), (101), (110), and (100) rutile SnO2 facets as a function of temperature. Trimethylaluminum (TMA) and dimethyl aluminum isopropoxide (DMAI) dimers are predicted to react with both dehydrated and hydrated SnO2 (001), (101), and (110) facets at ALD-relevant temperatures, while the SnO2 (100) facet is predicted to be uniquely unreactive with TMA and DMAI monomers as well as dehydrate near 177 degrees C making this facet more amenable to targeted ALD. In situ ellipsometric studies of Al2O3 ALD on polycrystalline SnO2 at 150 degrees C are consistent with the computational predictions of rapid and unselective nucleation, in stark contrast to inhibited and selective ALD on isostructural rutile TiO2.
引用
收藏
页数:9
相关论文
共 48 条
[1]  
Barth J.V., Costantini G., Kern K., Engineering atomic and molecular nanostructures at surfaces, Nature, 437, pp. 671-679, (2005)
[2]  
Lu W., Lieber C.M., Nanoelectronics from the bottom up, Nat. Mater., 6, pp. 841-850, (2007)
[3]  
Mackus A.J.M., Merkx M.J.M., Kessels W.M.M., From the bottom-up: toward area-selective atomic layer deposition with high selectivity, Chem. Mater., 31, pp. 2-12, (2019)
[4]  
Gregorczyk K., Knez M., Hybrid nanomaterials through molecular and atomic layer deposition: top down, bottom up, and in-between approaches to new materials, Prog. Mater Sci., 75, pp. 1-37, (2016)
[5]  
Lu J.L., Elam J.W., Stair P.C., Atomic layer deposition-Sequential self-limiting surface reactions for advanced catalyst “bottom-up” synthesis, Surf. Sci. Rep., 71, pp. 410-472, (2016)
[6]  
Yan H., Lin Y., Wu H., Zhang W.H., Sun Z.H., Cheng H., Liu W., Wang C.L., Li J.J., Huang X.H., Yao T., Yang J.L., Wei S.Q., Lu J.L., Bottom-up precise synthesis of stable platinum dimers on graphene, Nat. Commun., 8, (2017)
[7]  
Jones J.C., Kamphaus E.P., Cheng L., Liu C., Martinson A.B.F., Hock A.S., Mechanistically informed strategies for site-selective atomic layer deposition, Chem. Mater., 36, pp. 9065-9074, (2024)
[8]  
Shan N.N., Jones J.C., Luo C.X., Hock A.S., Martinson A.B.F., Cheng L., Selective hydroxylation of In<sub>2</sub>O<sub>3</sub> as a route to site-selective atomic layer deposition, J. Phys. Chem. C, 126, pp. 10359-10366, (2022)
[9]  
Kamphaus E.P., Shan N.N., Jones J.C., Martinson A.B.F., Cheng L., Selective hydration of rutile TiO<sub>2</sub> as a strategy for site-selective atomic layer deposition, Acs Appl. Mater. Inter., 14, pp. 21585-21595, (2022)
[10]  
Kamphaus E.P., Jones J.C., Shan N.N., Martinson A.B.F., Cheng L., Site-selective atomic layer deposition on rutile TiO<sub>2</sub>: selective hydration as a route to target point defects, J. Phys. Chem. C, 127, pp. 1397-1406, (2023)