Atomic-level dispersed nickel sites embedded in carbon support for efficient electrochemical CO2 reduction

被引:0
作者
Lu, Jiacheng [1 ]
Gu, Shengshen [1 ,2 ]
Xu, Rong [1 ]
Guo, Meng [1 ]
Fang, Juan [3 ]
Zhong, Jing [1 ]
机构
[1] Changzhou Univ, Sch Petrochem Engn, Jiangsu Key Lab Adv Catalyt Mat & Technol, Changzhou 213164, Peoples R China
[2] Changzhou Univ, Jiangsu Key Lab Adv Mfg High End Chem, Changzhou 213164, Peoples R China
[3] Univ Sci & Technol Beijing, Sch Energy & Environm Engn, Beijing 100083, Peoples R China
关键词
Single-atom catalysts; Ni sites; Electrocatalysis; DFT calculations; CO2; reduction; FRAMEWORK;
D O I
10.1016/j.ijhydene.2025.04.484
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Single-atom catalysts have shown exceptional activity and selectivity for CO2 electrochemical reduction reaction (CO2ERR) owing to the clearly defined and accessible active metallic sites. However, the role of Ni dispersion state (atomic vs. aggregated) on catalytic performance has remained elusive. Herein, we report the exploration dispersion state effects on activities by synthesizing catalysts embedded with Ni single atoms or aggregated particles. The catalyst with highly-dispersed Ni single atoms shows the highest Faradaic efficiency (FECO) for CO (96 % at-0.75 V vs. RHE) and the FECO could be retained for 12 h without a significant decay. While the catalyst with crystalline Ni particles shows a decreased FECO of 80 % and the catalyst with no Ni shows a least FECO of 38 % towards CO. The above experiments indicate that Ni metallic sites are the active centers for CO2ERR and atomic dispersion of Ni metallic sites plays a vital role in CO2ERR performance. Density functional theory (DFT) calculations reveal that the energy barrier of CO2ERR is reduced when Ni is in atomic dispersion rather than aggregation. The findings here have significant implications on a broad field of energy catalysis.
引用
收藏
页码:600 / 608
页数:9
相关论文
共 41 条
[1]   Robust carbon dioxide reduction on molybdenum disulphide edges [J].
Asadi, Mohammad ;
Kumar, Bijandra ;
Behranginia, Amirhossein ;
Rosen, Brian A. ;
Baskin, Artem ;
Repnin, Nikita ;
Pisasale, Davide ;
Phillips, Patrick ;
Zhu, Wei ;
Haasch, Richard ;
Klie, Robert F. ;
Kral, Petr ;
Abiade, Jeremiah ;
Salehi-Khojin, Amin .
NATURE COMMUNICATIONS, 2014, 5
[2]   Molecular screening of metal-organic frameworks for CO2 storage [J].
Babarao, Ravichandar ;
Jiang, Jianwen .
LANGMUIR, 2008, 24 (12) :6270-6278
[3]   Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement [J].
Blankenship, Robert E. ;
Tiede, David M. ;
Barber, James ;
Brudvig, Gary W. ;
Fleming, Graham ;
Ghirardi, Maria ;
Gunner, M. R. ;
Junge, Wolfgang ;
Kramer, David M. ;
Melis, Anastasios ;
Moore, Thomas A. ;
Moser, Christopher C. ;
Nocera, Daniel G. ;
Nozik, Arthur J. ;
Ort, Donald R. ;
Parson, William W. ;
Prince, Roger C. ;
Sayre, Richard T. .
SCIENCE, 2011, 332 (6031) :805-809
[4]   Harnessing the power of microbial autotrophy [J].
Claassens, Nico J. ;
Sousa, Diana Z. ;
dos Santos, Vitor A. P. Martins ;
de Vos, Willem M. ;
van der Oost, John .
NATURE REVIEWS MICROBIOLOGY, 2016, 14 (11) :692-706
[5]   Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts [J].
Cui, Xinjiang ;
Li, Wu ;
Ryabchuk, Pavel ;
Junge, Kathrin ;
Beller, Matthias .
NATURE CATALYSIS, 2018, 1 (06) :385-397
[6]   Activation of Ni Particles into Single Ni-N Atoms for Efficient Electrochemical Reduction of CO2 [J].
Fan, Qun ;
Hou, Pengfei ;
Choi, Changhyeok ;
Wu, Tai-Sing ;
Hong, Song ;
Li, Fang ;
Soo, Yun-Liang ;
Kang, Peng ;
Jung, Yousung ;
Sun, Zhenyu .
ADVANCED ENERGY MATERIALS, 2020, 10 (05)
[7]   Facile and Scalable Synthesis of Metal- and Nitrogen-Doped Carbon Nanotubes for Efficient Electrochemical CO2 Reduction [J].
Gang, Yang ;
Pellessier, John ;
Du, Zichen ;
Fang, Siyuan ;
Fang, Lingzhe ;
Pan, Fuping ;
Suarez, Manuel ;
Hambleton, Kirk ;
Chen, Fan ;
Zhou, Hong-Cai ;
Li, Tao ;
Hu, Yun Hang ;
Li, Ying .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (18) :7231-7243
[8]   Efficient electrochemical CO2 reduction to CO by metal and nitrogen co-doped carbon catalysts derived from pharmaceutical wastes adsorbed on commercial carbon nanotubes [J].
Gang, Yang ;
Li, Boyang ;
Fang, Siyuan ;
Pellessier, John ;
Fang, Lingzhe ;
Pan, Fuping ;
Du, Zichen ;
Hu, Yun Hang ;
Li, Tao ;
Wang, Guofeng ;
Li, Ying .
CHEMICAL ENGINEERING JOURNAL, 2022, 453
[9]   Atomically dispersed Ni species on N-doped carbon nanotubes for electroreduction of CO2 with nearly 100% CO selectivity [J].
Hou, Ying ;
Liang, Yu-Lin ;
Shi, Peng-Chao ;
Huang, Yuan-Biao ;
Cao, Rong .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 271
[10]   Recent Advances in Ni-Based Electrocatalysts for Hydrogen Evolution Reaction [J].
Hu, Cun ;
Lv, Chao ;
Zeng, Ning ;
Liu, Aojie ;
Liu, Yanan ;
Hu, Li ;
Li, Peilong ;
Yao, Yong ;
Cai, Jinguang ;
Tang, Tao .
ENERGY TECHNOLOGY, 2023, 11 (01)