An interpretable machine learning-based model of turbulent Prandtl number for supercritical CO2 under buoyancy

被引:0
作者
Zhang, Ruizeng [1 ]
Yang, Zhengwei [2 ]
Liu, Yu [3 ]
Qiu, Qinggang [1 ]
Zhu, Xiaojing [1 ]
机构
[1] Dalian Univ Technol, Key Lab Ocean Energy Utilizat & Energy Conservat, Minist Educ, Dalian 116024, Peoples R China
[2] China State Shipbldg Corp, Res Inst 703, Harbin 150010, Peoples R China
[3] Nucl Power Inst China, Sci & Technol Reactor Syst Design Technol Lab, Chengdu 610213, Peoples R China
基金
中国国家自然科学基金;
关键词
Supercritical fluids; Turbulent Prandtl number; Buoyancy; Machine learning; SHAP; CONVECTIVE HEAT-TRANSFER; CARBON-DIOXIDE; TRANSFER DETERIORATION; NUMERICAL-SIMULATION; PRESSURE FLUIDS; VERTICAL TUBE; FLOW; PREDICTION; WATER; DNS;
D O I
10.1016/j.applthermaleng.2025.126744
中图分类号
O414.1 [热力学];
学科分类号
摘要
Existing studies identify the failure of turbulent heat flux modeling-particularly the constant turbulent Prandtl number (Prt) assumption-as the primary cause of inaccurate heat transfer deterioration (HTD) predictions in supercritical fluids. To address this, we propose a dynamic Prt prediction framework based on interpretable machine learning (ML) to elucidate Prt evolution under buoyancy effects. The model comprises a Prt distribution framework integrating the thermophysical parameter (Pr) and a comprehensive factor fsp that captures system parameter influences, and an ML module that nonlinearly maps multi-parameter effects into fsp, overcoming the limitations of traditional empirical correlations. Results show that the model significantly improves HTD prediction accuracy and reveals that strong buoyancy necessitates a lower Prt to compensate for the turbulent diffusion attenuation. SHAP-based interpretability analysis further quantifies parameter influence hierarchies: heat flux and mass flow rate dominate HTD, inlet temperature, and pressure act independently without interfering with the effects of other parameters on heat transfer, and diameter amplifies the negative effects of heat flux and mass flow rate through synergistic interactions. This study establishes a high-accuracy, mechanically interpretable modeling paradigm for optimizing supercritical systems.
引用
收藏
页数:23
相关论文
共 63 条
[1]   Direct numerical simulation of turbulent supercritical flows with heat transfer [J].
Bae, JH ;
Yoo, JY ;
Choi, H .
PHYSICS OF FLUIDS, 2005, 17 (10)
[2]   A new formulation of variable turbulent Prandtl number for heat transfer to supercritical fluids [J].
Bae, Yoon Y. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 92 :792-806
[3]   Numerical simulation of upward flowing supercritical fluids using buoyancy-influence-reflected turbulence model [J].
Bae, Yoon-Yeong ;
Kim, Eung-Seon ;
Kim, Minhwan .
NUCLEAR ENGINEERING AND DESIGN, 2017, 324 :231-249
[4]   Numerical simulation of supercritical pressure fluids with property-dependent turbulent Prandtl number and variable damping function [J].
Bae, Yoon-Yeong ;
Kim, Eung-Seon ;
Kim, Minhwan .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 101 :488-501
[5]   Forced and mixed convection heat transfer to supercritical CO2 vertically flowing in a uniformly-heated circular tube [J].
Bae, Yoon-Yeong ;
Kim, Hwan-Yeol ;
Kang, Deog-Ji .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2010, 34 (08) :1295-1308
[6]   The significance of the buffer zone of boundary layer on convective heat transfer to a vertical turbulent flow of a supercritical fluid [J].
Bazargan, Majid ;
Mohseni, Mahdi .
JOURNAL OF SUPERCRITICAL FLUIDS, 2009, 51 (02) :221-229
[7]  
Beck Andrea, 2021, GAMM - Mitteilungen, V44, P1, DOI [10.1002/gamm.202100002, 10.1002/gamm.202100002]
[8]   FORCED CONVECTIVE HEAT TRANSFER TO TURBULENT CO2 IN SUPERCRITICAL REGION [J].
BOURKE, PJ ;
PULLING, DJ ;
GILL, LE ;
DENTON, WH .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1970, 13 (08) :1339-&
[9]   Supercritical CO2 as heat transfer fluid: A review [J].
Cabeza, Luisa F. ;
de Gracia, Alvaro ;
Ines Fernandez, A. ;
Farid, Mohammed M. .
APPLIED THERMAL ENGINEERING, 2017, 125 :799-810
[10]   Physics-informed neural networks (PINNs) for fluid mechanics: a review [J].
Cai, Shengze ;
Mao, Zhiping ;
Wang, Zhicheng ;
Yin, Minglang ;
Karniadakis, George Em .
ACTA MECHANICA SINICA, 2021, 37 (12) :1727-1738