Mechanical Properties of 3Y-TZP Woodpile Scaffold Made by Extrusion 3D Printing

被引:0
作者
Gomes, Patrick de Lima [1 ,2 ]
de Miranda, Victor Ribeiro [3 ]
de Oliveira, Isabela Santana [1 ]
Daguano, Juliana Kelmy Macario Barboza [4 ]
Elias, Carlos Nelson [2 ]
dos Santos, Claudinei [1 ,3 ]
机构
[1] Univ Fed Fluminense, Escola Engn Metalurg Ind Volta Redonda, Volta Redonda, RJ, Brazil
[2] Secao Engn Mat, Inst Mil Engn, Rio De Janeiro, RJ, Brazil
[3] Univ Estado Rio De Janeiro, Fac Tecnol, Resende, RJ, Brazil
[4] Ctr Tecnol Informacao Renato Archer, Grp Biofabricacao, Campinas, SP, Brazil
来源
MATERIALS RESEARCH-IBERO-AMERICAN JOURNAL OF MATERIALS | 2025年 / 28卷
关键词
Additive manufacturing; DIW; 3Y-TZP; bioceramics; mechanical properties; ELASTIC-MODULUS; ZIRCONIA; STRENGTH; INDENTATION; CERAMICS; HARDNESS;
D O I
10.1590/1980-5373-MR-2024-0489
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Zirconia woodpile scaffolds (3Y-TZP/PL, n = 20), designed with null inter-filament spacing, were manufactured using the Direct Ink Writing (DIW), an extrusion 3D printing technique. A ceramic ink containing 40%v/v 3Y-TZP powder, 59%v/v PEG (Polyethylene glycol)/Laponite ink, and 1%v/v DBP (Dibutylphthalate) was used. For 3D printing, we used & Oslash; 0.63 mm nozzles, a printing speed of 10 mm/s, a cross-layer deposition strategy, and no air gaps between filaments. The scaffolds were sintered at 1550 degrees C for 2 h. The mechanical characterization involved measurements of X-ray diffraction, scanning electron microscopy, Vickers microhardness, Vickers nanohardness, and modulus of elasticity and compressive strength. The sintered samples showed predominantly the ZrO2-tetragonal phase and a microstructure characterized by a bimodal distribution of grain sizes. The samples had a relative density of 90.1 +/- 1.5%, a Vickers microhardness of 1172 +/- 45 HV, a Vickers nanohardness of 1608 +/- 78 HV, a modulus of elasticity of 203 +/- 16 GPa, and a compressive strength of 192 +/- 54 MPa. The results showed that DIW processing followed by proper sintering is a promising method for making zirconia scaffolds for biomedical applications.
引用
收藏
页数:7
相关论文
共 26 条
[1]   Microtensile bond strength of different components of core veneered all-ceramic restorations - Part II: Zirconia veneering ceramics [J].
Aboushelib, Moustafa N. ;
Kleverlaan, Cornelis J. ;
Feilzer, Albert J. .
DENTAL MATERIALS, 2006, 22 (09) :857-863
[2]   Additive Manufacturing Techniques in Prosthodontics: Where Do We Currently Stand? A Critical Review [J].
Alharbi, Nawal ;
Wismeijer, Daniel ;
Osman, Reham B. .
INTERNATIONAL JOURNAL OF PROSTHODONTICS, 2017, 30 (05) :474-484
[3]  
ASTM: American Society for Testing and Materials, 2021, ISO/ ASTM 52900:2021: additive manufacturing-general principles-fundamentals and vocabulary, V2nd
[4]  
ASTM: American Society for Testing and Materials, 2019, ASTM C1327-15: standard test method for vickers indentation hardness of advanced ceramics, DOI [10.1520/C1327-15R19, DOI 10.1520/C1327-15R19]
[5]  
ASTM: American Society for Testing and Materials, 2017, ASTM B962-17: standard test methods for density of compacted or sintered Powder Metallurgy (PM) products using Archimedes' Principle, DOI [10.1520/B0962-17, DOI 10.1520/B0962-17]
[6]   Microstructure and mechanical properties of fully sintered zirconia glazed with an experimental glass [J].
Bastos Campos, Tiago Moreira ;
de Melo Marinho, Renata Marques ;
Pinto Ribeiro, Amanda de Oliveira ;
do Amaral Montanheiro, Thais Larissa ;
da Silva, Ana Carolina ;
Thim, Gilmar Patrocinio .
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2021, 113
[7]   Mechanical properties-translucency-microstructure relationships in commercial monolayer and multilayer monolithic zirconia ceramics [J].
Cokic, Stevan M. ;
Condor, Mar ;
Vleugels, Jef ;
Van Meerbeek, Bart ;
Van Oosterwyck, Hans ;
Inokoshi, Masanao ;
Zhang, Fei .
DENTAL MATERIALS, 2022, 38 (05) :797-810
[8]  
Cotteleer M., 2013, The 3D opportunity primer: The basics of additive manufacturing
[9]  
Daguano JKMB, 2019, International Journal of Advances in Medical Biotechnology - IJAMB, V2, P55, DOI [10.25061/2595-3931/ijamb/2019.v2i1.28, 10.25061/2595-3931/IJAMB, DOI 10.25061/2595-3931/IJAMB, 10.25061/2595-3931/IJAMB/2019.v2i1.28, DOI 10.25061/2595-3931/IJAMB/2019.V2I1.28, 10.25061/2595-3931/ijamb/2019.v2i1.28]
[10]   Additive Manufacturing of Ceramics: A Review [J].
Deckers, J. ;
Vleugels, J. ;
Kruthl, J. -P. .
JOURNAL OF CERAMIC SCIENCE AND TECHNOLOGY, 2014, 5 (04) :245-260