A review of artificial intelligence (AI)-based applications to nanocomposites

被引:0
作者
Logakannan, Krishna Prasath [1 ]
Guven, Ibrahim [2 ]
Odegard, Gregory [3 ]
Wang, Kan [4 ]
Zhang, Chuck [4 ,5 ]
Liang, Zhiyong [6 ]
Spear, Ashley [1 ]
机构
[1] Univ Utah, Dept Mech Engn, Salt Lake City, UT 84112 USA
[2] Virginia Commonwealth Univ, Dept Mech & Nucl Engn, Richmond, VA USA
[3] Michigan Technol Univ, Dept Mech & Aerosp Engn, Houghton, MI USA
[4] Georgia Inst Technol, Georgia Tech Mfg Inst, Atlanta, GA USA
[5] Georgia Inst Technol, Sch Ind & Syst Engn, Atlanta, GA USA
[6] FAMU, High Performance Mat Inst, FSU Coll Engn, Dept Ind & Mfg Engn, Tallahassee, FL USA
关键词
Nanocomposites; Artificial intelligence; Machine learning; CARBON NANOTUBES; DESIGN; COMPOSITES; FRACTURE; PREDICTIONS; OPPORTUNITIES; DISCOVERY;
D O I
10.1016/j.compositesa.2025.109027
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recent progress in artificial intelligence (AI) techniques has attracted interest from researchers in various engineering fields, including materials science and engineering. AI has enabled materials researchers to explore vast materials design spaces, which were previously inaccessible due to the inherent limitations of conventional techniques (viz., experiments and physics-based computational models). This is particularly true for the design of nanocomposites because of the many degrees of freedom associated with both material composition and manufacturing parameters. The primary motivation of this review is to report how AI techniques are being used in nanocomposite materials design, with special attention given to the manufacturing and property prediction of nanocomposites using AI techniques.
引用
收藏
页数:20
相关论文
共 140 条
[1]   Experimental study and machine learning simulation of Pb (II) separation from aqueous solutions via a nanocomposite adsorbent [J].
Abedpour, Hasan ;
Moghaddas, Jafarsadegh ;
Sori, Abobakr ;
Alizadeh, Reza .
JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2023, 147
[2]   Predicting mechanical properties of carbon nanotube-reinforced cementitious nanocomposites using interpretable ensemble learning models [J].
Adel, Hossein ;
Palizban, Seyed Mohammad Mahdi ;
Sharifi, Seyed Sina ;
Ghazaan, Majid Ilchi ;
Korayem, Asghar Habibnejad .
CONSTRUCTION AND BUILDING MATERIALS, 2022, 354
[3]   Mechanical property prediction of SPS processed GNP/PLA polymer nanocomposite using artificial neural network [J].
Adesina, O. T. ;
Jamiru, T. ;
Daniyan, I. A. ;
Sadiku, E. R. ;
Ogunbiyi, O. F. ;
Adesina, O. S. ;
Beneke, L. W. .
COGENT ENGINEERING, 2020, 7 (01)
[4]   Perspective: Materials informatics and big data: Realization of the "fourth paradigm" of science in materials science [J].
Agrawal, Ankit ;
Choudhary, Alok .
APL MATERIALS, 2016, 4 (05)
[5]   Forecasting compressive strength and electrical resistivity of graphite based nano-composites using novel artificial intelligence techniques [J].
Alabduljabbar, Hisham ;
Amin, Muhammad Nasir ;
Eldin, Sayed M. ;
Javed, Muhammad Faisal ;
Alyousef, Rayed ;
Mohamed, Abdeliazim Mustafa .
CASE STUDIES IN CONSTRUCTION MATERIALS, 2023, 18
[6]   Machine learning-assisted ammonium detection using zinc oxide/multi-walled carbon nanotube composite based impedance sensors [J].
Aliyana, Akshaya Kumar ;
Kumar, S. K. Naveen ;
Marimuthu, Pradeep ;
Baburaj, Aiswarya ;
Adetunji, Michael ;
Frederick, Terrance ;
Sekhar, Praveen ;
Fernandez, Renny Edwin .
SCIENTIFIC REPORTS, 2021, 11 (01)
[7]   A perspective on Bayesian methods applied to materials discovery and design [J].
Arroyave, Raymundo ;
Khatamsaz, Danial ;
Vela, Brent ;
Couperthwaite, Richard ;
Molkeri, Abhilash ;
Singh, Prashant ;
Johnson, Duane D. ;
Qian, Xiaoning ;
Srivastava, Ankit ;
Allaire, Douglas .
MRS COMMUNICATIONS, 2022, 12 (06) :1037-1049
[8]   nanoNET: machine learning platform for predicting nanoparticles distribution in a polymer matrix [J].
Ayush, Kumar ;
Seth, Abhishek ;
Patra, Tarak K. .
SOFT MATTER, 2023, 19 (29) :5502-5512
[9]   Deep learning aided evaluation for electromechanical properties of complexly structured polymer nanocomposites [J].
Baek, Kyungmin ;
Hwang, Taehyun ;
Lee, Wonseok ;
Chung, Hayoung ;
Cho, Maenghyo .
COMPOSITES SCIENCE AND TECHNOLOGY, 2022, 228
[10]   Ensemble Machine Learning approach for evaluating the material characterization of carbon nanotube-reinforced cementitious composites [J].
Bagherzadeh, Faramarz ;
Shafighfard, Torkan .
CASE STUDIES IN CONSTRUCTION MATERIALS, 2022, 17