Machine learning density functional compatible with dispersion correction for non-covalent interactions

被引:0
作者
Zhang, Yapeng [1 ]
An, Zipeng [1 ]
Wang, JingChun [2 ]
Wang, Yao [1 ]
Xu, Rui-Xue [1 ]
Chen, GuanHua [3 ]
Zheng, Xiao [4 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Synerget Innovat Ctr Quantum Informat & Quantum Ph, Hefei 230026, Peoples R China
[2] Univ Basel, Dept Chem, CH-4056 Basel, Switzerland
[3] Univ Hong Kong, Dept Chem, Hong Kong 999077, Peoples R China
[4] Fudan Univ, Dept Chem, Shanghai 200438, Peoples R China
基金
中国国家自然科学基金;
关键词
Density functional theory; Exchange-correlation functional; Machine learning; COMBINED 1ST-PRINCIPLES CALCULATION; ENERGY; MODEL; THERMOCHEMISTRY; APPROXIMATION; COMPUTATION; GAUSSIAN-2; QUALITY; DESIGN; ERRORS;
D O I
10.1063/1674-0068/cjcp2502013
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
Machine learning (ML) has demonstrated significant potential in enhancing the predictive capabilities of density functional theory methods. In this study, we develop an ML model for correcting B3LYP-D, a density functional approximation that incorporates dispersion corrections for non-covalent interactions. This model utilizes semilocal electron density descriptors, and is trained with accurate reference data for both relative and absolute energies. Extensive benchmark tests reveal that the ML correction substantially enhances the generalization ability of the B3LYP-D functional, improving the predictions of atomization and dissociation energies for complex molecular systems. It retains the accuracy of B3LYP-D in predicting reaction barrier heights and non-covalent interactions while enabling efficient, fully self-consistent field calculations. This work signifies a promising advancement in the development of ML-corrected functionals that surpass the performance of traditional B3LYP-D.
引用
收藏
页码:140 / 148
页数:9
相关论文
共 66 条
[1]   ELECTRONIC-STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS - THE PROGRAM SYSTEM TURBOMOLE [J].
AHLRICHS, R ;
BAR, M ;
HASER, M ;
HORN, H ;
KOLMEL, C .
CHEMICAL PHYSICS LETTERS, 1989, 162 (03) :165-169
[2]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[3]   A SIMPLE MEASURE OF ELECTRON LOCALIZATION IN ATOMIC AND MOLECULAR-SYSTEMS [J].
BECKE, AD ;
EDGECOMBE, KE .
JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (09) :5397-5403
[4]   DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR [J].
BECKE, AD .
PHYSICAL REVIEW A, 1988, 38 (06) :3098-3100
[5]   Bypassing the Kohn-Sham equations with machine learning [J].
Brockherde, Felix ;
Vogt, Leslie ;
Li, Li ;
Tuckerman, Mark E. ;
Burke, Kieron ;
Mueller, Klaus-Robert .
NATURE COMMUNICATIONS, 2017, 8
[6]   A generally applicable atomic-charge dependent London dispersion correction [J].
Caldeweyher, Eike ;
Ehlert, Sebastian ;
Hansen, Andreas ;
Neugebauer, Hagen ;
Spicher, Sebastian ;
Bannwarth, Christoph ;
Grimme, Stefan .
JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (15)
[7]   Extension of the D3 dispersion coefficient model [J].
Caldeweyher, Eike ;
Bannwarth, Christoph ;
Grimme, Stefan .
JOURNAL OF CHEMICAL PHYSICS, 2017, 147 (03)
[8]   Long-range corrected double-hybrid density functionals [J].
Chai, Jeng-Da ;
Head-Gordon, Martin .
JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (17)
[9]   Assessment of Gaussian-3 and density functional theories for a larger experimental test set [J].
Curtiss, LA ;
Raghavachari, K ;
Redfern, PC ;
Pople, JA .
JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (17) :7374-7383
[10]   Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation [J].
Curtiss, LA ;
Raghavachari, K ;
Redfern, PC ;
Pople, JA .
JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (03) :1063-1079