Antibacterial efficacy of nanostructured surfaces

被引:1
作者
Sheu, Shu-Yun [1 ]
Lee, Kang-Yuan [2 ]
Shen, Ching-Fen [3 ]
Lin, Kiera [4 ]
Lin, Chung-Hsiang [2 ]
Cheng, Chao-Min [1 ]
机构
[1] Natl Tsing Hua Univ, Inst Biomed Engn, Hsinchu, Taiwan
[2] Quantum NIL Corp, Miaoli, Taiwan
[3] Natl Cheng Kung Univ, Natl Cheng Kung Univ Hosp, Coll Med, Dept Pediat, Tainan, Taiwan
[4] Purdue Univ, Coll Pharm, W Lafayette, IN USA
关键词
Nanostructured surface; Hydrophobicity; Antibacterial efficacy; Single-periodic; Dual-periodic; BACTERICIDAL SURFACES; ROUGHNESS; IMPRINT; CELLS;
D O I
10.1016/j.apmt.2025.102717
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanostructures in nature exhibit unique properties, such as hydrophobicity and self-cleaning effects, known as the lotus effect. Despite advancements in nanotechnology, research on the antibacterial applications of nano-patterned surfaces remains limited. This study investigates the antibacterial efficacy of nanostructured surfaces against common pathogens, including Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa. These bacteria were cultured on substrates featuring single-periodic and dual-periodic nano-structured surfaces, demonstrating significant inhibition of bacterial growth. For example, E. coli exhibited a 37.58% reduction on the P322 surface, while S. aureus showed a 17.08% reduction on the P977 surface. K. pneumoniae demonstrated a 33.63% reduction on the H200 surface, and P. aeruginosa was inhibited by 17.49% on the P200 surface. These findings highlight the antibacterial potential of single-periodic and dual-periodic nanostructured surfaces, emphasizing their promise in antibacterial applications, particularly for mass-producible antimicrobial substrates. Additionally, this study introduces dual-periodic nanostructured surfaces as a design innovation for enhanced antimicrobial efficacy.
引用
收藏
页数:8
相关论文
共 49 条
[1]   Bactericidal Effects of Natural Nanotopography of Dragonfly Wing on Escherichia coli [J].
Bandara, Chaturanga D. ;
Singh, Sanjleena ;
Afara, Isaac O. ;
Wolff, Annalena ;
Tesfamichael, Tuquabo ;
Ostrikov, Kostya ;
Oloyede, Adekunle .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (08) :6746-6760
[2]   Antibacterial titanium nano-patterned arrays inspired by dragonfly wings [J].
Bhadra, Chris M. ;
Vi Khanh Truong ;
Pham, Vy T. H. ;
Al Kobaisi, Mohammad ;
Seniutinas, Gediminas ;
Wang, James Y. ;
Juodkazis, Saulius ;
Crawford, Russell J. ;
Ivanova, Elena P. .
SCIENTIFIC REPORTS, 2015, 5
[3]   Antibacterial flexible triboelectric nanogenerator via capillary force lithography [J].
Cheng, Kuan ;
Huang, Zixu ;
Wang, Pengcheng ;
Sun, Li ;
Ghasemi, Hadi ;
Ardebili, Haleh ;
Karim, Alamgir .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 630 :611-622
[4]   Imprint lithography with sub-10 nm feature size and high throughput [J].
Chou, SY ;
Krauss, PR .
MICROELECTRONIC ENGINEERING, 1997, 35 (1-4) :237-240
[5]   IMPRINT OF SUB-25 NM VIAS AND TRENCHES IN POLYMERS [J].
CHOU, SY ;
KRAUSS, PR ;
RENSTROM, PJ .
APPLIED PHYSICS LETTERS, 1995, 67 (21) :3114-3116
[6]   Nanopatterned polymer surfaces with bactericidal properties [J].
Dickson, Mary Nora ;
Liang, Elena I. ;
Rodriguez, Luis A. ;
Vollereaux, Nicolas ;
Yee, Albert F. .
BIOINTERPHASES, 2015, 10 (02)
[7]   Bacterial-nanostructure interactions: The role of cell elasticity and adhesion forces [J].
Elbourne, Aaron ;
Chapman, James ;
Gelmi, Amy ;
Cozzolino, Daniel ;
Crawford, Russell J. ;
Vi Khanh Truong .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 546 (192-210) :192-210
[8]   Nano-structured antimicrobial surfaces: From nature to synthetic analogues [J].
Elbourne, Aaron ;
Crawford, Russell J. ;
Ivanova, Elena P. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2017, 508 :603-616
[9]   Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry [J].
Epstein, A. K. ;
Hochbaum, A. I. ;
Kim, Philseok ;
Aizenberg, J. .
NANOTECHNOLOGY, 2011, 22 (49)
[10]   Bactericidal nanopatterns generated by block copolymer self-assembly [J].
Fontelo, R. ;
Soares da Costa, D. ;
Reis, R. L. ;
Novoa-Carballal, R. ;
Pashkuleva, I .
ACTA BIOMATERIALIA, 2020, 112 :174-181