Well-posedness of initial-boundary value problem for time-fractional diffusion/wave equation with time-dependent coefficients

被引:0
作者
Huang, Xinchi [1 ]
Yamamoto, Masahiro [2 ,3 ,4 ,5 ]
机构
[1] Univ Tokyo, Sch Sci, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1138654, Japan
[2] Univ Tokyo, Grad Sch Math Sci, 3-8-1 Komaba,Meguro Ku, Tokyo 1538914, Japan
[3] Zonguldak Bulent Ecevit Univ, Fac Sci, Dept Math, TR-67100 Zonguldak, Turkiye
[4] Acad Romanian Scientists, Ilfov Nr 3, Bucharest, Romania
[5] Palazzo Univ, Acad Peloritana Pericolanti, Piazza S Pugliatti 1, I-98122 Messina, Italy
基金
日本学术振兴会;
关键词
Time-fractional diffusion/wave equation; Initial-boundary value problem; Fredholm alternative; Galerkin approximation; Regularity estimate; INTEGRODIFFERENTIAL EQUATIONS; WAVE EQUATIONS;
D O I
10.1007/s00028-025-01094-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the well-posedness of the initial-boundary value problem for a time-fractional partial differential equation with the fractional order lying in (1,2]. For the case of time-dependent coefficients, it is difficult to give an explicit solution formula by the eigenfunction expansion method. In order to deal with the case of time-varying coefficients, we first show the unique existence and regularity of solution to a system of time-fractional ordinary differential equations. Then, the unique differential equation and improved regularity are derived by using the Galerkin method.
引用
收藏
页数:37
相关论文
共 31 条
[1]  
Adams R.A., 2003, Sobolev Spaces, V2nd
[2]  
BREZIS H., 2010, Functional Analysis
[4]  
Evans L.C., 1998, Graduate Studies in Mathematics, V19, P662
[5]  
Gorenflo R., 2020, Mittag-Leffler Functions, DOI DOI 10.1007/978-3-662-43930-2
[6]   TIME-FRACTIONAL DIFFUSION EQUATION IN THE FRACTIONAL SOBOLEV SPACES [J].
Gorenflo, Rudolf ;
Luchko, Yuri ;
Yamamoto, Masahiro .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (03) :799-820
[7]  
Gripenberg G., 1990, Cambridge University Press, DOI DOI 10.1017/CBO9780511662805
[8]   Weighted Lq(Lp)-estimate with Muckenhoupt weights for the diffusion-wave equations with time-fractional derivatives [J].
Han, Beom-Seok ;
Kim, Kyeong-Hun ;
Park, Daehan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (04) :3515-3550
[9]   WELL-POSEDNESS FOR WEAK AND STRONG SOLUTIONS OF NON-HOMOGENEOUS INITIAL BOUNDARY VALUE PROBLEMS FOR FRACTIONAL DIFFUSION EQUATIONS [J].
Kian, Yavar ;
Yamamoto, Masahiro .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2021, 24 (01) :168-201
[10]   Distributed order calculus and equations of ultraslow diffusion [J].
Kochubei, Anatoly N. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (01) :252-281