Learning Task-Specific Sampling Strategy for Sparse-View CT Reconstruction

被引:0
作者
Yang, Liutao [1 ,2 ]
Huang, Jiahao [2 ,3 ,4 ]
Fang, Yingying [2 ]
Aviles-Rivero, Angelica, I [5 ]
Schonlieb, Carola-Bibiane [5 ]
Zhang, Daoqiang [1 ]
Yang, Guang [2 ,3 ,4 ,6 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing 210016, Peoples R China
[2] Imperial Coll London, Natl Heart & Lung Inst, London SW7 2AZ, England
[3] Imperial Coll London, Bioengn Dept & Imperial X, London SW7 2AZ, England
[4] Royal Brompton Hosp, Natl Heart Cardiovasc Res Ctr, London SW3 6NP, England
[5] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB2 1TN, England
[6] Kings Coll London, Sch Biomed Engn & Imaging Sci, London WC2R 2LS, England
基金
中国国家自然科学基金; 欧盟地平线“2020”;
关键词
Image reconstruction; Computed tomography; Imaging; Multitasking; Training; Deep learning; Vectors; Image quality; Medical diagnosis; Data mining; Computed tomography (CT) reconstruction; deep learning; multitask learning; sampling strategy; sparse-view CT; CONVOLUTIONAL NEURAL-NETWORK;
D O I
10.1109/TIM.2025.3554318
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Sparse-view computed tomography (SVCT) offers low-dose and fast imaging but suffers from severe artifacts. Optimizing the sampling strategy is an essential approach to improving the imaging quality of SVCT. However, current methods typically optimize a universal sampling strategy for all types of scans, overlooking the fact that the optimal strategy may vary depending on the specific scanning task, whether it involves particular body scans (e.g., chest computed tomography (CT) scans) or downstream clinical applications (e.g., disease diagnosis). The optimal strategy for one scanning task may not perform as well when applied to other tasks. To address this problem, this article proposes a deep learning framework that learns task-specific sampling strategies with a multitask approach to train a unified reconstruction network while tailoring optimal sampling strategies for each individual task. Thus, a task-specific sampling strategy can be applied for each type of scan to improve the quality of SVCT imaging and further assist in the performance of downstream clinical usage. Extensive experiments across different scanning types provide validation for the effectiveness of task-specific sampling strategies in enhancing imaging quality. Experiments involving downstream tasks verify the clinical value of learned sampling strategies, as evidenced by notable improvements in downstream task performance. Furthermore, the utilization of a multitask framework with a shared reconstruction network facilitates deployment on current imaging devices with switchable task-specific modules, and allows for easily integrate new tasks without retraining the entire model.
引用
收藏
页数:11
相关论文
共 52 条
[1]  
Bao H., 2021, arXiv
[2]   Application of the noise power spectrum in modern diagnostic MDCT: Part I. Measurement of noise power spectra and noise equivalent quanta [J].
Boedeker, K. L. ;
Cooper, V. N. ;
McNitt-Gray, M. F. .
PHYSICS IN MEDICINE AND BIOLOGY, 2007, 52 (14) :4027-4046
[3]  
Bouhaouel F., 2020, P 10 C IND COMP TOM, V25, P1
[4]  
Caballero J, 2014, LECT NOTES COMPUT SC, V8673, P106, DOI 10.1007/978-3-319-10404-1_14
[5]   LEARN: Learned Experts' Assessment-Based Reconstruction Network for Sparse-Data CT [J].
Chen, Hu ;
Zhang, Yi ;
Chen, Yunjin ;
Zhang, Junfeng ;
Zhang, Weihua ;
Sun, Huaiqiang ;
Lv, Yang ;
Liao, Peixi ;
Zhou, Jiliu ;
Wang, Ge .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (06) :1333-1347
[6]   Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network [J].
Chen, Hu ;
Zhang, Yi ;
Kalra, Mannudeep K. ;
Lin, Feng ;
Chen, Yang ;
Liao, Peixi ;
Zhou, Jiliu ;
Wang, Ge .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (12) :2524-2535
[7]  
Crawshaw Michael., MULTITASK LEARNING D
[8]   A Review of Analysis and Sample Size Calculation Considerations for Wilcoxon Tests [J].
Divine, George ;
Norton, H. James ;
Hunt, Ronald ;
Dienemann, Jacqueline .
ANESTHESIA AND ANALGESIA, 2013, 117 (03) :699-710
[9]   Dose and image quality for a cone-beam C-arm CT system [J].
Fahrig, Rebecca ;
Dixon, Robert ;
Payne, Thomas ;
Morin, Richard L. ;
Ganguly, Arundhuti ;
Strobel, Norbert .
MEDICAL PHYSICS, 2006, 33 (12) :4541-4550
[10]   Dynamic Multimodal Information Bottleneck for Multimodality Classification [J].
Fang, Yingying ;
Wu, Shuang ;
Zhang, Sheng ;
Huang, Chaoyan ;
Zeng, Tieyong ;
Xing, Xiaodan ;
Walsh, Simon ;
Yang, Guang .
2024 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION, WACV 2024, 2024, :7681-7691