Noise Blind Deep Residual Wiener Deconvolution network for image deblurring

被引:0
作者
Kong, Shengjiang [1 ]
Wang, Weiwei [1 ]
Feng, Xiangchu [1 ]
Jia, Xixi [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep convolutional neural network; Wiener deconvolution; Image deblurring; SPARSE REPRESENTATION; NEURAL-NETWORK;
D O I
10.1016/j.dsp.2025.105304
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Deep Wiener Deconvolution Network (DWDN) provides a simple and effective approach for non-blind image deblurring by performing the classical Wiener filtering in deep feature domain. However, it needs estimation of signal-to-noise ratio (SNR), which is obtained under the uniform Gaussian noise assumption. This paper presents the Residual Wiener Deconvolution (RWD) network, which reformulates Wiener deconvolution into two successive operations: deconvolution and denoising. To avoid explicit estimation of SNR, the denoising operation is parameterized by a network, in which the SNR is estimated. The RWD network is then combined with the encoding/decoding network of DWDN +, resulting in an end-to-end trainable model called Noise Blind Deep Residual Wiener Deconvolution (NBDRWD) network. Experimental results show that, the proposed NBDRWD significantly outperforms related baselines in deblurring images corrupted by uniform Gaussian noise, nonuniform Gaussian noise, JPEG compression artifacts, and real blur.
引用
收藏
页数:13
相关论文
共 70 条
[1]   Blind Image Deblurring with FFT-ReLU Sparsity Prior [J].
Al Radi, Abdul Mohaimen ;
Majumder, Prothito Shovon ;
Khan, Md. Mosaddek .
2025 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION, WACV, 2025, :3447-3456
[2]   Douglas-Rachford Networks: Learning Both the Image Prior and Data Fidelity Terms for Blind Image Deconvolution [J].
Aljadaany, Raied ;
Pal, Dipan K. ;
Savvides, Marios .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :10227-10236
[3]  
Bigdeli SA, 2017, ADV NEUR IN, V30
[4]   Sylvester Tikhonov-regularization methods in image restoration [J].
Bouhamidi, A. ;
Jbilou, K. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 206 (01) :86-98
[5]  
Cai JF, 2009, PROC CVPR IEEE, P104, DOI 10.1109/CVPRW.2009.5206743
[6]   Deconvolutional neural network for image super-resolution [J].
Cao, Feilong ;
Yao, Kaixuan ;
Liang, Jiye .
NEURAL NETWORKS, 2020, 132 :394-404
[7]   Learning a Non-blind Deblurring Network for Night Blurry Images [J].
Chen, Liang ;
Zhang, Jiawei ;
Pan, Jinshan ;
Lin, Songnan ;
Fang, Faming ;
Ren, Jimmy S. .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :10537-10545
[8]   Fast Motion Deblurring [J].
Cho, Sunghyun ;
Lee, Seungyong .
ACM TRANSACTIONS ON GRAPHICS, 2009, 28 (05) :1-8
[9]   Image restoration by sparse 3D transform-domain collaborative filtering [J].
Dabov, Kostadin ;
Foi, Alessandro ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
IMAGE PROCESSING: ALGORITHMS AND SYSTEMS VI, 2008, 6812
[10]   Image denoising by sparse 3-D transform-domain collaborative filtering [J].
Dabov, Kostadin ;
Foi, Alessandro ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (08) :2080-2095