Silk fibroin-enhanced peptide self-assembled biomimetic hydrogel for 3D cell proliferation

被引:0
作者
Ding, Liqin [1 ]
Liu, Xinyi [1 ]
Sun, Ruiyang [2 ,3 ]
Wang, Anhe [2 ]
Li, Qi [2 ]
Liang, Sen [2 ]
Tian, Yajie [2 ]
Zhang, Xiaoming [4 ]
Li, Hong [1 ]
Li, Jieling [2 ]
Bai, Shuo [2 ]
机构
[1] Xian Shiyou Univ, Coll Chem & Chem Engn, Xian 710065, Peoples R China
[2] Chinese Acad Sci, Inst Proc Engn, State Key Lab Biopharmaceut Preparat & Delivery, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Minzu Univ China, Optoelect Res Ctr, Sch Sci, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Short peptide; Self-assembly; Silk fibroin; Injectable hydrogel; 3D cell expansion; DELIVERY; THERAPY;
D O I
10.1016/j.colsurfa.2025.137123
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cell therapy has emerged as an innovative approach with great potential for treating various diseases. However, challenges such as insufficient quantities of transplanted cells hinder its effectiveness. In comparison to traditional two-dimensional expansion, three-dimensional (3D) cell culture can support higher cell proliferation rates and better preserve the normal functions and specific phenotypes of cells. Despite these advantages, creating a biomimetic 3D cell proliferation scaffold through mild, biocompatible methods remains a significant bottleneck in cell therapy. Peptide self-assembled hydrogels, with their biomimetic nanofiber network structure, provide an ideal environment for 3D cell expansion. However, their weak mechanical properties limit their use in long-term cell cultures. To address this, we introduce silk fibroin into the peptide self-assembled hydrogel. The macro-molecular silk fibroin template regulates the organization of short peptide molecules, enhancing their interactions and significantly improving the mechanical strength of the hydrogel. Experimental results show that the combination of silk fibroin and peptide solution creates a biomimetic hydrogel with enhanced mechanical properties under mild, physiological conditions. This hydrogel retains its nanofiber microstructure, exhibits low cytotoxicity, excellent biocompatibility, and good recoverability and injectability. Moreover, it supports rapid 3D cell proliferation, providing a sufficient number of cells for cell therapy. This work is a significant step toward advancing the clinical application of cell therapy.
引用
收藏
页数:8
相关论文
共 35 条
[1]   The importance of 3D fibre architecture in cancer and implications for biomaterial model design [J].
Ashworth, J. C. ;
Cox, T. R. .
NATURE REVIEWS CANCER, 2024, 24 (07) :461-479
[2]   Stabilizing bubble and droplet interfaces using dipeptide hydrogels [J].
Avino, Fernando ;
Matheson, Andrew B. ;
Adams, Dave J. ;
Clegg, Paul S. .
ORGANIC & BIOMOLECULAR CHEMISTRY, 2017, 15 (30) :6342-6348
[3]   Stem cell therapy for cardiac disease [J].
Bernstein, Harold S. ;
Srivastava, Deepak .
PEDIATRIC RESEARCH, 2012, 71 (04) :491-499
[4]   Introduction to Stem Cell Therapy [J].
Biehl, Jesse K. ;
Russell, Brenda .
JOURNAL OF CARDIOVASCULAR NURSING, 2009, 24 (02) :98-103
[5]   Interrogating open issues in cancer precision medicine with patient-derived xenografts [J].
Byrne, Annette T. ;
Alferez, Denis G. ;
Amant, Frederic ;
Annibali, Daniela ;
Arribas, Joaquin ;
Biankin, Andrew V. ;
Bruna, Alejandra ;
Budinska, Eva ;
Caldas, Carlos ;
Chang, David K. ;
Clarke, Robert B. ;
Clevers, Hans ;
Coukos, George ;
Dangles-Marie, Virginie ;
Eckhardt, S. Gail ;
Gonzalez-Suarez, Eva ;
Hermans, Els ;
Hidalgo, Manuel ;
Jarzabek, Monika A. ;
de Jong, Steven ;
Jonkers, Jos ;
Kemper, Kristel ;
Lanfrancone, Luisa ;
Maelandsmo, Gunhild Mari ;
Marangoni, Elisabetta ;
Marine, Jean-Christophe ;
Medico, Enzo ;
Norum, Jens Henrik ;
Palmer, Hector G. ;
Peeper, Daniel S. ;
Pelicci, Pier Giuseppe ;
Piris-Gimenez, Alejandro ;
Roman-Roman, Sergio ;
Rueda, Oscar M. ;
Seoane, Joan ;
Serra, Violeta ;
Soucek, Laura ;
Vanhecke, Dominique ;
Villanueva, Alberto ;
Vinolo, Emilie ;
Bertotti, Andrea ;
Trusolino, Livio .
NATURE REVIEWS CANCER, 2017, 17 (04) :254-268
[6]   Tissue-Engineered Therapeutics for Lymphatic Regeneration: Solutions for Myocardial Infarction and Secondary Lymphedema [J].
Chiu, Alvis ;
Rutkowski, Joseph M. ;
Zhang, Qixu ;
Zhao, Feng .
ADVANCED HEALTHCARE MATERIALS, 2025, 14 (06)
[7]   Bone Marrow-Derived Cell Transplantation Therapy for Myocardial Infarction: Lessons Learned and Future Questions [J].
Dai, W. ;
Kloner, R. A. .
AMERICAN JOURNAL OF TRANSPLANTATION, 2011, 11 (11) :2297-2301
[8]   Low molecular weight self-assembling peptide-based materials for cell culture, antimicrobial, anti-inflammatory, wound healing, anticancer, drug delivery, bioimaging and 3D bioprinting applications [J].
Das, Apurba K. ;
Gavel, Pramod K. .
SOFT MATTER, 2020, 16 (44) :10065-10095
[9]   Biomaterials for Personalized Cell Therapy [J].
Facklam, Amanda L. ;
Volpatti, Lisa R. ;
Anderson, Daniel G. .
ADVANCED MATERIALS, 2020, 32 (13)
[10]   Self-healing, 3D printed bioinks from self-assembled peptide and alginate hybrid hydrogels [J].
Field, Emily H. ;
Ratcliffe, Julian ;
Johnson, Chad J. ;
Binger, Katrina J. ;
Reynolds, Nicholas P. .
BIOMATERIALS ADVANCES, 2025, 169