Photonic frequency multiplexed next-generation reservoir computer

被引:0
作者
Cox, Nicholas [1 ]
Murray, Joseph [1 ]
Hart, Joseph [1 ]
Redding, Brandon [1 ]
机构
[1] US Naval Res Lab, 4555 Overlook Ave SW, Washington, DC 20375 USA
关键词
PERFORMANCE; PREDICTION; SYSTEMS; VCSEL;
D O I
10.1063/5.0248952
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this work, we introduce and experimentally demonstrate a photonic frequency-multiplexed next generation reservoir computer (FM-NGRC) capable of performing real-time inference at GHz speeds. NGRCs apply a feed-forward architecture to produce a feature vector directly from the input data over a fixed number of time steps. This feature vector, analogous to the reservoir state in a conventional RC, is used to perform inference by applying a decision layer trained by linear regression. Photonic NGRC provides a flexible platform for real-time inference by forgoing the need for explicit feedback loops inherent to a physical reservoir. The FM-NGRC introduced here defines the memory structure using an optical frequency comb and dispersive fiber, while the sinusoidal response of electro-optic Mach-Zehnder interferometers controls the nonlinear transform applied to elements of the feature vector. A programmable waveshaper modulates each comb tooth independently to apply the trained decision layer weights in the analog domain. We apply the FM-NGRC to solve the benchmark nonlinear channel equalization task; after theoretically determining feature vectors that enable high-accuracy distortion compensation, we construct an FM-NGRC that generates these vectors to experimentally demonstrate real-time channel equalization at 5 GS/s with a symbol error rate of similar to 2.5 x 10(-3). (c) 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license(https://creativecommons.org/licenses/by/4.0/).https://doi.org/10.1063/5.0248952
引用
收藏
页数:11
相关论文
共 68 条
[1]   Review of deep learning: concepts, CNN architectures, challenges, applications, future directions [J].
Alzubaidi, Laith ;
Zhang, Jinglan ;
Humaidi, Amjad J. ;
Al-Dujaili, Ayad ;
Duan, Ye ;
Al-Shamma, Omran ;
Santamaria, J. ;
Fadhel, Mohammed A. ;
Al-Amidie, Muthana ;
Farhan, Laith .
JOURNAL OF BIG DATA, 2021, 8 (01)
[2]   Online Training of an Opto-Electronic Reservoir Computer Applied to Real-Time Channel Equalization [J].
Antonik, Piotr ;
Duport, Francois ;
Hermans, Michiel ;
Smerieri, Anteo ;
Haelterman, Marc ;
Massar, Serge .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2017, 28 (11) :2686-2698
[3]   Information processing using a single dynamical node as complex system [J].
Appeltant, L. ;
Soriano, M. C. ;
Van der Sande, G. ;
Danckaert, J. ;
Massar, S. ;
Dambre, J. ;
Schrauwen, B. ;
Mirasso, C. R. ;
Fischer, I. .
NATURE COMMUNICATIONS, 2011, 2
[4]   Comparison of Photonic Reservoir Computing Systems for Fiber Transmission Equalization [J].
Argyris, Apostolos ;
Cantero, Javier ;
Galletero, M. ;
Pereda, Ernesto ;
Mirasso, Claudio R. ;
Fischer, Ingo ;
Soriano, Miguel C. .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2020, 26 (01)
[5]   PAM-4 Transmission at 1550 nm Using Photonic Reservoir Computing Post-Processing [J].
Argyris, Apostolos ;
Bueno, Julian ;
Fischer, Ingo .
IEEE ACCESS, 2019, 7 :37017-37025
[6]   Photonic machine learning implementation for signal recovery in optical communications [J].
Argyris, Apostolos ;
Bueno, Julian ;
Fischer, Ingo .
SCIENTIFIC REPORTS, 2018, 8
[7]  
Billings SA, 2013, NONLINEAR SYSTEM IDENTIFICATION: NARMAX METHODS IN THE TIME, FREQUENCY, AND SPATIO-TEMPORAL DOMAINS, P1, DOI 10.1002/9781118535561
[8]  
Boikov I., 2023, 2023 C LAS EL EUR EU, P1
[9]   Parallel photonic information processing at gigabyte per second data rates using transient states [J].
Brunner, Daniel ;
Soriano, Miguel C. ;
Mirasso, Claudio R. ;
Fischer, Ingo .
NATURE COMMUNICATIONS, 2013, 4
[10]   Photonic reservoir computer based on frequency multiplexing [J].
Butschek, Lorenz ;
Akrout, Akram ;
Dimitriadou, Evangelia ;
Lupo, Alessandro ;
Haelterman, Marc ;
Massar, Serge .
OPTICS LETTERS, 2022, 47 (04) :782-785