A posteriori error estimates and time adaptivity for fully discrete finite element method for the incompressible Navier-Stokes equations

被引:0
作者
Yang, Shuo [1 ]
Tian, Hongjiong [1 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
基金
中国国家自然科学基金;
关键词
Incompressible Navier-Stokes equations; Variable step-size BDF2; Finite element method; Energy stability; A posteriori error analysis; Time adaptive algorithm; CRANK-NICOLSON METHOD; PARABOLIC PROBLEMS; VARIABLE STEPS; APPROXIMATION; DISCRETIZATION; REGULARITY; BDF;
D O I
10.1016/j.apnum.2025.05.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a posteriori error estimates for the incompressible Navier-Stokes equations in a convex polygonal domain. The semi-implicit variable step-size two-step backward differentiation formula (BDF2) is employed for the time discretization and the Taylor-Hood finite element method (FEM) is used for the space discretization. We prove energy stability of semi-implicit variable step-size BDF2 FEM under different Courant Friedreich Lewy (CFL)type conditions by utilizing different embeddings for the nonlinear term. Two appropriate reconstructions of the approximate solution are proposed to obtain the time discretization error. Resorting to the energy stability and the quadratic reconstructions, we obtain a posteriori upper and lower error bounds for the fully discrete approximation. We further develop a time adaptive algorithm for efficient time step control based on the time error estimators. Several numerical experiments are performed to verify our theoretical results and demonstrate the efficiency of the time adaptive algorithm.
引用
收藏
页码:17 / 38
页数:22
相关论文
共 47 条
[1]  
Akrivis G, 2006, MATH COMPUT, V75, P511, DOI 10.1090/S0025-5718-05-01800-4
[2]   A POSTERIORI ERROR ESTIMATES FOR THE TWO-STEP BACKWARD DIFFERENTIATION FORMULA METHOD FOR PARABOLIC EQUATIONS [J].
Akrivis, Georgios ;
Chatzipantelidis, Panagiotis .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (01) :109-132
[3]   Optimal order a posteriori error estimates for a class of Runge-Kutta and Galerkin methods [J].
Akrivis, Georgios ;
Makridakis, Charalambos ;
Nochetto, Ricardo H. .
NUMERISCHE MATHEMATIK, 2009, 114 (01) :133-160
[4]   A POSTERIORI ERROR ESTIMATES FOR PRESSURE-CORRECTION SCHEMES [J].
Baensch, E. ;
Brenner, A. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (04) :2323-2358
[5]   A POSTERIORI ERROR CONTROL FOR FULLY DISCRETE CRANK-NICOLSON SCHEMES [J].
Baensch, E. ;
Karakatsani, F. ;
Makridakis, Ch. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (06) :2845-2872
[6]  
Baker G, 1976, GALERKIN APPROXIMATI
[7]  
BAKER GA, 1982, MATH COMPUT, V39, P339, DOI 10.1090/S0025-5718-1982-0669634-0
[8]   A second order backward difference method with variable steps for a parabolic problem [J].
Becker, J .
BIT, 1998, 38 (04) :644-662
[9]  
Bergam A, 2005, MATH COMPUT, V74, P1117, DOI 10.1090/S0025-5718-04-01697-7
[10]   Goal-oriented space-time adaptivity in the finite element Galerkin method for the computation of nonstationary incompressible flow [J].
Besier, Michael ;
Rannacher, Rolf .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2012, 70 (09) :1139-1166