Effect of ocean surface waves on sea ice using coupled wave-ice-ocean modelling

被引:1
作者
Li, Shuo [1 ]
Babanin, Alexander [1 ]
Liu, Qingxiang [1 ,2 ]
Liu, Jin [1 ,4 ]
Li, Rui [3 ]
Voermans, Joey [1 ]
机构
[1] Univ Melbourne, Dept Infrastruct Engn, Melbourne, Vic, Australia
[2] Ocean Univ China, Phys Oceanog Lab, Qingdao, Peoples R China
[3] Ocean Univ China, Coll Ocean & Atmospher Sci, Qingdao, Peoples R China
[4] Dept Energy Environm & Climate Act, Melbourne, Vic, Australia
基金
中国国家自然科学基金;
关键词
Wave-ice-ocean interactions; Ocean waves; Sea ice; Coupled model; TURBULENCE; EQUATION; IMPACT; COVER;
D O I
10.1016/j.ocemod.2025.102540
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The reduction of ice content in the context of climate change in polar oceans has sparked strong scientific interest in wave-ice interactions. To study the wave effect on sea ice in the marginal ice zone (MIZ), wave model WW3 and ocean-ice model MOM6-SIS2 are fully coupled by implementing schemes to account for non-breaking wave-induced turbulence and wave stress on ice. Improved estimations of ocean mixed layer depth and sea ice extent are achieved by incorporating the parameterizations of wave effects. The results also show that wave-induced turbulence enhances upper ocean mixing and significantly impedes ice growth with warmed sea surface in winter. Conversely, the sea surface is cooled in summer and the sea ice melt is slowed down. The wave stress on ice is predominantly directed towards the ice field and is comparable in magnitude to the wind stress. The sea ice extent is increased due to the wave stress.
引用
收藏
页数:12
相关论文
共 53 条
[1]   The GFDL Global Ocean and Sea Ice Model OM4.0: Model Description and Simulation Features [J].
Adcroft, Alistair ;
Anderson, Whit ;
Balaji, V. ;
Blanton, Chris ;
Bushuk, Mitchell ;
Dufour, Carolina O. ;
Dunne, John P. ;
Griffies, Stephen M. ;
Hallberg, Robert ;
Harrison, Matthew J. ;
Held, Isaac M. ;
Jansen, Malte F. ;
John, Jasmin G. ;
Krasting, John P. ;
Langenhorst, Amy R. ;
Legg, Sonya ;
Liang, Zhi ;
McHugh, Colleen ;
Radhakrishnan, Aparna ;
Reichl, Brandon G. ;
Rosati, Tony ;
Samuels, Bonita L. ;
Shao, Andrew ;
Stouffer, Ronald ;
Winton, Michael ;
Wittenberg, Andrew T. ;
Xiang, Baoqiang ;
Zadeh, Niki ;
Zhang, Rong .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2019, 11 (10) :3167-3211
[2]  
ARAKAWA A, 1981, MON WEATHER REV, V109, P18, DOI 10.1175/1520-0493(1981)109<0018:APEAEC>2.0.CO
[3]  
2
[4]   Implications of fractured Arctic perennial ice cover on thermodynamic and dynamic sea ice processes [J].
Asplin, Matthew G. ;
Scharien, Randall ;
Else, Brent ;
Howell, Stephen ;
Barber, David G. ;
Papakyriakou, Tim ;
Prinsenberg, Simon .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2014, 119 (04) :2327-2343
[5]   On a wave-induced turbulence and a wave-mixed upper ocean layer [J].
Babanin, A. V. .
GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (20)
[6]  
Babanin A.V., 2011, BREAKING DISSIPATION
[7]  
Balaji V, 2012, SPRINGERBR EARTH SYS, P33, DOI 10.1007/978-3-642-23360-9_5
[8]   Impact of sea ice floe size distribution on seasonal fragmentation and melt of Arctic sea ice [J].
Bateson, Adam W. ;
Feltham, Daniel L. ;
Schroder, David ;
Hosekova, Lucia ;
Ridley, Jeff K. ;
Aksenov, Yevgeny .
CRYOSPHERE, 2020, 14 (02) :403-428
[9]   An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates [J].
Bleck, Rainer .
OCEAN MODELLING, 2002, 4 (01) :55-88
[10]   The elastic-viscous-plastic method revisited [J].
Bouillon, Sylvain ;
Fichefet, Thierry ;
Legat, Vincent ;
Madec, Gurvan .
OCEAN MODELLING, 2013, 71 :2-12