共 65 条
[1]
Vasu S., Thekke Madam N., Rajagopalan A., Analyzing perception–distortion tradeoff using enhanced perceptual super-resolution network, Proceedings of the European Conference on Computer Vision (ECCV) Workshops, (2018)
[2]
Wu H., Zheng S., Zhang J., Huang K., Gp-gan: towards realistic high-resolution image blending, Proceedings of the 27th ACM International Conference on Multimedia, pp. 2487-2495, (2019)
[3]
Taigman Y., Polyak A., Wolf L., Unsupervised Cross-Domain Image Generation, (2016)
[4]
Jin Y., Zhang J., Li M., Tian Y., Zhu H., Fang Z., Towards the Automatic Anime Characters Creation with Generative Adversarial Networks, (2017)
[5]
Yoo D., Kim N., Park S., Paek A.S., Kweon I.S., Pixel-level domain transfer, European Conference on Computer Vision, pp. 517-532, (2016)
[6]
Zhang H., Xu T., Li H., Zhang S., Wang X., Huang X., Metaxas D.N., Stackgan: text to photo-realistic image synthesis with stacked generative adversarial networks, Proceedings of the IEEE International Conference on Computer Vision, pp. 5907-5915, (2017)
[7]
Isola P., Zhu J.-Y., Zhou T., Efros A.A., Image-to-image translation with conditional adversarial networks, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125-1134, (2017)
[8]
Wolterink J.M., Leiner T., Viergever M.A., Isgum I., Generative adversarial networks for noise reduction in low-dose CT, IEEE Trans. Med. Imaging, 36, 12, pp. 2536-2545, (2017)
[9]
Qin C., Schlemper J., Caballero J., Price A.N., Hajnal J.V., Rueckert D., Convolutional recurrent neural networks for dynamic MR image reconstruction, IEEE Trans. Med. Imaging, 38, 1, pp. 280-290, (2018)
[10]
Gong Y., Shan H., Teng Y., Tu N., Li M., Liang G., Wang G., Wang S., Parameter-transferred Wasserstein generative adversarial network (PT-WGAN) for low-dose pet image denoising, IEEE Trans. Radiat. Plasma Med. Sci, 5, 2, pp. 213-223, (2020)