Adaptive phase-field cohesive-zone model for simulation of mixed-mode interfacial and bulk fracture in heterogeneous materials with directional energy decomposition

被引:0
作者
Bian, Pei-Liang [1 ]
Liu, Qinghui [1 ]
Zhang, Heng [1 ]
Qing, Hai [2 ]
Schmauder, Siegfried [3 ]
Yu, Tiantang [1 ]
机构
[1] Hohai Univ, Dept Engn Mech, Nanjing 211100, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, State Key Lab Mech & Control Aerosp Struct, Nanjing 210016, Peoples R China
[3] Univ Stuttgart, Inst Mat Testing Mat Sci & Strength Mat, D-70569 Stuttgart, Germany
基金
中国国家自然科学基金;
关键词
Phase-field method; Interfacial debonding; Mixed-mode fracture; Cohesive-zone model; Finite element method; Adaptive mesh refinement; ARC-LENGTH METHOD; BRITTLE-FRACTURE; DAMAGE MODEL; FAILURE; PROPAGATION;
D O I
10.1016/j.cma.2025.118062
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Interfacial debonding, a critical failure mechanism in heterogeneous materials, is often characterized by mixed-mode fracture. This study develops a numerical framework to simulate bulk and interfacial fractures in composite materials. A phase-field cohesive zone model, incorporating a directional energy decomposition scheme and a modified toughness method, is employed to capture complex fracture behaviors. A level-set method explicitly defines interface positions, while an adaptive mesh refinement strategy enhances computational efficiency. Numerical examples validate the model's accuracy and efficiency in predicting mixed-mode crack propagation and interfacial debonding. This work provides a robust and efficient approach to simulate complex fracture phenomena in heterogeneous materials, especially for the mixed-mode fracture.
引用
收藏
页数:31
相关论文
共 85 条
[31]   Modelling high temperature progressive failure in C/SiC composites using a phase field model: Oxidation rate controlled process [J].
Hu, Xiaofei ;
Tan, Siyuan ;
Xu, Huiqian ;
Sun, Zhi ;
Wang, Tong ;
Min, Lang ;
Wang, Zilong ;
Yao, Weian .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 433
[32]   A mixed mode phase-field model of ductile fracture [J].
Huber, William ;
Zaeem, Mohsen Asle .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2023, 171
[33]   A three-field phase-field model for mixed-mode fracture in rock based on experimental determination of the mode II fracture toughness [J].
Hug, L. ;
Potten, M. ;
Stockinger, G. ;
Thuro, K. ;
Kollmannsberger, S. .
ENGINEERING WITH COMPUTERS, 2022, 38 (06) :5563-5581
[34]   Adaptive isogeometric analysis-based phase-field modeling of interfacial fracture in piezoelectric composites [J].
Kiran, Raj ;
Nguyen-Thanh, Nhon ;
Yu, Hualong ;
Zhou, Kun .
ENGINEERING FRACTURE MECHANICS, 2023, 288
[35]   Meso-scale fracture simulation using an augmented Lagrangian approach [J].
Labanda, Nicolas A. ;
Giusti, Sebastian M. ;
Luccioni, Bibiana M. .
INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, 2018, 27 (01) :138-175
[36]   Phase-field modeling of proppant-filled fractures in a poroelastic medium [J].
Lee, Sanghyun ;
Mikelic, Andro ;
Wheeler, Mary F. ;
Wick, Thomas .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 312 :509-541
[37]   A framework for phase-field modeling of interfacial debonding and frictional slipping in heterogeneous composites [J].
Li, G. ;
Yin, B. B. ;
Zhang, L. W. ;
Liew, K. M. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 382
[38]   Modeling microfracture evolution in heterogeneous composites: A coupled cohesive phase-field model [J].
Li, G. ;
Yin, B. B. ;
Zhang, L. W. ;
Liew, K. M. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2020, 142
[39]   A reflection on the Mohr failure criterion [J].
Li, Shuguang .
MECHANICS OF MATERIALS, 2020, 148
[40]   Gradient damage models: Toward full-scale computations [J].
Lorentz, E. ;
Godard, V. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (21-22) :1927-1944