Formaldehyde is the most abundant carbonyl globally and the biggest driver of cancer risk in the United States among hazardous air pollutants. Ambient formaldehyde concentration measurements are generally sparse due to high measurement costs and limited measurement infrastructure. Recent studies have used low-cost air quality sensors to affordably improve spatial coverage and provide real-time measurements. Our previous research evaluated the laboratory performance of a low-cost electrochemical formaldehyde sensor (Sensirion SFA30) over formaldehyde concentrations ranging from 0 to 76 ppb. The sensors exhibited good linearity of response, a low limit of detection, and good accuracy in detecting formaldehyde. This study evaluated the cross-sensitivity of the SFA30 and the Gravity sensors (electrochemical formaldehyde sensors) over formaldehyde concentrations ranging from 0 to 326 ppb in a laboratory evaluation system, with broadband cavity-enhanced absorption spectroscopy used to obtain the reference measurements. We evaluated the sensors in a mixture of formaldehyde with five outdoor trace gases (CO, NO, NO2, O3, and isobutylene) and two indoor VOCs (methanol and isopropyl alcohol). The results suggest that the Gravity sensors may be useful for outdoor formaldehyde measurements when formaldehyde levels are well above background levels and that the SFA30 sensors may be useful screening tools for indoor environments, if properly calibrated.