Enhancing Prediction Accuracy and Data Handling for Environmental Applications in Innovative Modeling of Groundwater Level Fluctuations Based on the Tree Ensembles Technique

被引:0
作者
Chi, Duong Thi Kim [1 ]
Thiem, Do Dac [1 ]
Quynh, Trinh Thi Nhu [1 ]
Nguyen, Thanh Q. [2 ]
机构
[1] Thu Dau Mot Univ, Fac Engn & Technol, 06 Tran Van On Phu Hoa Ward, Thu Dau Mot 82000, Binh Duong Binh, Vietnam
[2] Nguyen Tat Thanh Univ, Inst Interdisciplinary Sci, Ho Chi Minh City 700000, Vietnam
关键词
Groundwater level prediction; Confined and unconfined aquifers; Tree ensemble models [random forest and extreme gradient boosting (XGBoost); Hydrogeological modeling; NEURAL-NETWORK; LSTM;
D O I
10.1061/JHYEFF.HEENG-6395
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study developed a model to evaluate and predict fluctuations in groundwater levels by analyzing key factors influencing water reserves. Feature calculations were performed to enhance forecast accuracy, emphasizing the automatic handling of missing and noisy data before training. Using the tree ensembles learning method, the model demonstrated high accuracy in predicting water level trends in storage areas like aquifers and lakes. It showed flexibility in processing diverse input variables, including erroneous and incomplete data, without requiring complex preprocessing. This adaptability highlights the potential for real-world applications where data complexity is common. In conclusion, the study presents an effective approach for predicting groundwater level fluctuations and offers promising prospects for advancing environmental evaluation and prediction models.
引用
收藏
页数:19
相关论文
共 31 条
[21]   Deep Learning-Based Forecasting of Groundwater Level Trends in India: Implications for Crop Production and Drinking Water Supply [J].
Malakar, Pragnaditya ;
Mukherjee, Abhijit ;
Bhanja, Soumendra N. ;
Sarkar, Sudeshna ;
Saha, Dipankar ;
Ray, Ranjan Kumar .
ACS ES&T ENGINEERING, 2021, 1 (06) :965-977
[22]   Short-term streamflow modeling using data-intelligence evolutionary machine learning models [J].
Martinho, Alfeu D. ;
Hippert, Henrique S. ;
Goliatt, Leonardo .
SCIENTIFIC REPORTS, 2023, 13 (01)
[23]   A Survey of Ensemble Learning: Concepts, Algorithms, Applications, and Prospects [J].
Mienye, Ibomoiye Domor ;
Sun, Yanxia .
IEEE ACCESS, 2022, 10 :99129-99149
[24]   Surrogate optimization of deep neural networks for groundwater predictions [J].
Mueller, Juliane ;
Park, Jangho ;
Sahu, Reetik ;
Varadharajan, Charuleka ;
Arora, Bhavna ;
Faybishenko, Boris ;
Agarwal, Deborah .
JOURNAL OF GLOBAL OPTIMIZATION, 2021, 81 (01) :203-231
[25]   Groundwater level prediction using machine learning algorithms in a drought-prone area [J].
Quoc Bao Pham ;
Kumar, Manish ;
Di Nunno, Fabio ;
Elbeltagi, Ahmed ;
Granata, Francesco ;
Islam, Abu Reza Md Towfiqul ;
Talukdar, Swapan ;
X Cuong Nguyen ;
Ahmed, Ali Najah ;
Duong Tran Anh .
NEURAL COMPUTING & APPLICATIONS, 2022, 34 (13) :10751-10773
[26]   Technical note: Application of artificial neural networks in groundwater table forecasting - a case study in a Singapore swamp forest [J].
Sun, Yabin ;
Wendi, Dadiyorto ;
Kim, Dong Eon ;
Liong, Shie-Yui .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2016, 20 (04) :1405-1412
[27]   Ensemble deep learning in speech signal tasks: A review [J].
Tanveer, M. ;
Rastogi, Aryan ;
Paliwal, Vardhan ;
Ganaie, M. A. ;
Malik, A. K. ;
Del Ser, Javier ;
Lin, Chin-Teng .
NEUROCOMPUTING, 2023, 550
[28]   Groundwater level prediction using machine learning models: A comprehensive review [J].
Tao, Hai ;
Hameed, Mohammed Majeed ;
Marhoon, Haydar Abdulameer ;
Zounemat-Kermani, Mohammed ;
Heddam, Salim ;
Kim, Sungwon ;
Sulaiman, Sadeq Oleiwi ;
Tan, Mou Leong ;
Sa'adi, Zulfaqar ;
Mehrm, Ali Danandeh ;
Allawi, Mohammed Falah ;
Abba, S., I ;
Zain, Jasni Mohamad ;
Falah, Mayadah W. ;
Jamei, Mehdi ;
Bokde, Neeraj Dhanraj ;
Bayatvarkeshi, Maryam ;
Al-Mukhtar, Mustafa ;
Bhagat, Suraj Kumar ;
Tiyasha, Tiyasha ;
Khedher, Khaled Mohamed ;
Al-Ansari, Nadhir ;
Shahid, Shamsuddin ;
Yaseen, Zaher Mundher .
NEUROCOMPUTING, 2022, 489 :271-308
[29]  
Wunsch A., 2020, Hydrol. Earth Syst. Sci. Discuss, V552, P1
[30]  
Zaini N., 2018, P IOP C SERIES EARTH