In Situ Analog In-Memory Computing Under Ionizing Radiation Exposure

被引:0
作者
Xiao, T. Patrick [1 ]
Siath, Maximilian [2 ]
Spear, Matthew [2 ]
Wilson, Donald [2 ]
Bennett, Christopher H. [1 ]
Feinberg, Ben [1 ]
Hughart, David R. [1 ]
Neuendank, Jereme [2 ]
Brown, William E. [3 ]
Barnaby, Hugh [2 ]
Agrawal, Vineet [4 ]
Puchner, Helmut [4 ]
Agarwal, Sapan [5 ]
Marinella, Matthew J. [2 ]
机构
[1] Sandia Natl Labs, Albuquerque, NM 87185 USA
[2] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
[3] Ellutions LLC, Chandler, AZ 85286 USA
[4] Infineon Technol, San Jose, CA 95037 USA
[5] Sandia Natl Labs, Livermore, CA 94550 USA
关键词
SONOS devices; Convolutional neural networks; Accuracy; Neural networks; Vectors; Ionizing radiation; In-memory computing; Training; Threshold voltage; Logic gates; Analog computing; charge-trap memory; flash memory; in-memory computing (IMC); ionizing radiation; machine learning (ML); neural networks; silicon-oxide-nitride-oxide-silicon (SONOS); total ionizing dose (TID);
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We experimentally performed in situ analog in-memory computing (IMC) under ionizing radiation, using a 40-nm silicon-oxide-nitride-oxide-silicon (SONOS) charge-trap memory array with peripheral circuits that support analog matrix-vector multiplication (MVM) operations. The SONOS array used analog MVMs to process the last layer of a convolutional neural network (CNN) for TinyImageNet image classification while being irradiated by gamma rays from a Co-60 source. We experimentally characterized how the following quantities were gradually degraded by increasing the total ionizing dose (TID), up to 3.2 Mrad(Si): neural network weights that were mapped to SONOS states, dot products that were computed by analog MVMs, and the resulting image classification accuracy of the neural network. Using multiscale modeling, we confirmed that the experimentally observed accuracy loss originates almost entirely from the state-dependent current shifts induced by ionizing radiation in the SONOS memory cells. Our experimentally validated model of radiation effects in SONOS analog computing can be used to guide the design of reliable space-grade analog IMC accelerators.
引用
收藏
页码:1243 / 1251
页数:9
相关论文
共 34 条
[1]  
Agrawal V., 2022, IEDM, P519
[2]   In-Memory Computing array using 40nm multibit SONOS achieving 100 TOPS/W energy efficiency for Deep Neural Network Edge Inference Accelerators [J].
Agrawal, Vineet ;
Prabhakar, V ;
Ramkumar, K. ;
Hinh, Long ;
Saha, Swatilekha ;
Samanta, Santanu ;
Kapre, Ravindra .
2020 IEEE INTERNATIONAL MEMORY WORKSHOP (IMW 2020), 2020, :107-110
[3]   Total Ionizing Dose Effects in 3-D NAND Flash Memories [J].
Bagatin, Marta ;
Gerardin, Simone ;
Paccagnella, Alessandro ;
Beltrami, Silvia ;
Costantino, Alessandra ;
Muschitiello, Michele ;
Zadeh, Ali ;
Ferlet-Cavrois, Veronique .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2019, 66 (01) :48-53
[4]   Total Ionizing Dose Responses of 22-nm FDSOI and 14-nm Bulk FinFET Charge-Trap Transistors [J].
Brewer, Rachel M. ;
Zhang, En Xia ;
Gorchichko, Mariia ;
Wang, Peng Fei ;
Cox, Jonathan ;
Moran, Steven L. ;
Ball, Dennis R. ;
Sierawski, Brian D. ;
Fleetwood, Daniel M. ;
Schrimpf, Ronald D. ;
Iyer, Subramanian S. ;
Alles, Michael L. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2021, 68 (05) :677-686
[5]   Neuromorphic computing using non-volatile memory [J].
Burr, Geoffrey W. ;
Shelby, Robert M. ;
Sebastian, Abu ;
Kim, Sangbum ;
Kim, Seyoung ;
Sidler, Severin ;
Virwani, Kumar ;
Ishii, Masatoshi ;
Narayanan, Pritish ;
Fumarola, Alessandro ;
Sanches, Lucas L. ;
Boybat, Irem ;
Le Gallo, Manuel ;
Moon, Kibong ;
Woo, Jiyoo ;
Hwang, Hyunsang ;
Leblebici, Yusuf .
ADVANCES IN PHYSICS-X, 2017, 2 (01) :89-124
[6]  
Chatha K., 2021, P IEEE HOT CHIPS 33, P28
[7]  
Chollet F., 2015, Keras
[8]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[9]   1/f Noise and Defects in Microelectronic Materials and Devices [J].
Fleetwood, D. M. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2015, 62 (04) :1462-1486
[10]   Xilinx Adaptive Compute Acceleration Platform: Versal™ Architecture [J].
Gaide, Brian ;
Gaitonde, Dinesh ;
Ravishankar, Chirag ;
Bauer, Trevor .
PROCEEDINGS OF THE 2019 ACM/SIGDA INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE GATE ARRAYS (FPGA'19), 2019, :84-93