Sensitive area in the tropical Indian Ocean for advancing beyond the summer predictability barrier of Indian Ocean Dipole

被引:0
作者
Feng, Rong [1 ,2 ]
Duan, Wansuo [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Earth Syst Numer Modeling & Applicat, Beijing 100029, Peoples R China
[2] Shanghai Frontiers Sci Ctr Atmosphere Ocean Intera, Shanghai 200438, Peoples R China
[3] Univ Chinese Acad Sci, Coll Marine Sci, Qingdao 266400, Peoples R China
基金
中国国家自然科学基金;
关键词
Initial errors; Indian Ocean Dipole; Summer predictability barrier; Sensitive area; Targeted observations; COUPLED CLIMATE MODELS; INITIAL ERRORS; PART I; KALMAN FILTER; VARIABILITY; DYNAMICS; EVENTS; ATMOSPHERE; IOD; SST;
D O I
10.1016/j.dynatmoce.2025.101552
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Using the geophysical fluid dynamics laboratory climate model version 2p1 (GFDL CM2p1), perfect model predictability experiments have been conducted to identify the sensitive area in the tropical Indian Ocean for advancing beyond the summer predictability barrier (SPB) of positive Indian Ocean Dipole (IOD) events. In these experiments, the model is assumed to be perfect, and prediction errors are only caused by initial errors. Initially, the impact of initial error patterns on prediction uncertainties was assessed by comparing dipole pattern initial errors with three sets of spatially correlated noises. The results revealed that dipole pattern initial errors tend to result in larger prediction errors and higher error growth rates in summer, leading to a significant SPB phenomenon. Notably, the large values of these dipole pattern initial errors are concentrated in specific areas. By eliminating initial errors within these areas, the prediction errors in summer are largely reduced, underscoring the sensitivity of prediction uncertainties in summer to initial errors in these areas. Moreover, the prediction errors in summer exhibit a higher sensitivity to initial errors within the subsurface large value area compared to those within the surface large value area. Consequently, the subsurface large value area in the tropical Indian Ocean is the sensitive area for advancing beyond the SPB, aligning with the corresponding location for advancing beyond the WPB. Eliminating initial errors within this area leads to a rapid decrease in prediction uncertainties, with a more pronounced reduction in winter than in summer. Through intensive observations in this sensitive area, significant reductions in prediction errors in both summer and winter can be achieved, thereby greatly improve the forecast skill of IOD events.
引用
收藏
页数:14
相关论文
共 53 条
[1]   The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations [J].
Anderson, JL ;
Balaji, V ;
Broccoli, AJ ;
Cooke, WF ;
Delworth, TL ;
Dixon, KW ;
Donner, LJ ;
Dunne, KA ;
Freidenreich, SM ;
Garner, ST ;
Gudgel, RG ;
Gordon, CT ;
Held, IM ;
Hemler, RS ;
Horowitz, LW ;
Klein, SA ;
Knutson, TR ;
Kushner, PJ ;
Langenhost, AR ;
Lau, NC ;
Liang, Z ;
Malyshev, SL ;
Milly, PCD ;
Nath, MJ ;
Ploshay, JJ ;
Ramaswamy, V ;
Schwarzkopf, MD ;
Shevliakova, E ;
Sirutis, JJ ;
Soden, BJ ;
Stern, WF ;
Thompson, LA ;
Wilson, RJ ;
Wittenberg, AT ;
Wyman, BL .
JOURNAL OF CLIMATE, 2004, 17 (24) :4641-4673
[2]   A CGCM study on the interaction between IOD and ENSO [J].
Behera, Swadhin K. ;
Luo, Jing Jia ;
Masson, Sebastien ;
Rao, Suryachandra A. ;
Sakum, Hirofumi ;
Yamagata, Toshio .
JOURNAL OF CLIMATE, 2006, 19 (09) :1688-1705
[3]  
Bishop CH, 2001, MON WEATHER REV, V129, P420, DOI 10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO
[4]  
2
[5]   Opposite response of strong and moderate positive Indian Ocean Dipole to global warming [J].
Cai, Wenju ;
Yang, Kai ;
Wu, Lixin ;
Huang, Gang ;
Santoso, Agus ;
Ng, Benjamin ;
Wang, Guojian ;
Yamagata, Toshio .
NATURE CLIMATE CHANGE, 2021, 11 (01) :27-32
[6]   Indian Ocean dipolelike variability in the CSIRO mark 3 coupled climate model [J].
Cai, WJ ;
Hendon, HH ;
Meyers, G .
JOURNAL OF CLIMATE, 2005, 18 (10) :1449-1468
[7]   GFDL's CM2 global coupled climate models. Part I: Formulation and simulation characteristics [J].
Delworth, TL ;
Broccoli, AJ ;
Rosati, A ;
Stouffer, RJ ;
Balaji, V ;
Beesley, JA ;
Cooke, WF ;
Dixon, KW ;
Dunne, J ;
Dunne, KA ;
Durachta, JW ;
Findell, KL ;
Ginoux, P ;
Gnanadesikan, A ;
Gordon, CT ;
Griffies, SM ;
Gudgel, R ;
Harrison, MJ ;
Held, IM ;
Hemler, RS ;
Horowitz, LW ;
Klein, SA ;
Knutson, TR ;
Kushner, PJ ;
Langenhorst, AR ;
Lee, HC ;
Lin, SJ ;
Lu, J ;
Malyshev, SL ;
Milly, PCD ;
Ramaswamy, V ;
Russell, J ;
Schwarzkopf, MD ;
Shevliakova, E ;
Sirutis, JJ ;
Spelman, MJ ;
Stern, WF ;
Winton, M ;
Wittenberg, AT ;
Wyman, B ;
Zeng, F ;
Zhang, R .
JOURNAL OF CLIMATE, 2006, 19 (05) :643-674
[8]   Thermocline Warming Induced Extreme Indian Ocean Dipole in 2019 [J].
Du, Yan ;
Zhang, Yuhong ;
Zhang, Lian-Yi ;
Tozuka, Tomoki ;
Ng, Benjamin ;
Cai, Wenju .
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (18)
[9]   Impacts of the Indian Ocean Dipole on Sea Level and Gyre Circulation of the Western Tropical Pacific Ocean [J].
Duan, Jing ;
Li, Yuanlong ;
Zhang, Lei ;
Wang, Fan .
JOURNAL OF CLIMATE, 2020, 33 (10) :4207-4228
[10]   Interannual variability in the tropical Indian Ocean: a two-year time-scale of Indian Ocean dipole [J].
Feng, M ;
Meyers, G .
DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 2003, 50 (12-13) :2263-2284