From literature to predictive modeling: Insights and machine learning applications from in vitro comet assays related to the genotoxicity of titanium dioxide nanomaterials

被引:0
作者
Furxhi, Irini [1 ]
Mirzaei, Mahsa [2 ]
Costa, Anna [1 ]
Bengalli, Rossella [3 ]
机构
[1] CNR, ISSMC Ist Sci & Tecnol Mat Ceram, Via Granarolo 64, I-48018 Faenza, RA, Italy
[2] Univ Coll Dublin, UCD Conway Inst, Sch Biomol & Biomed Sci, Dublin, Ireland
[3] Univ Milano Bicocca, Dept Earth & Environm Sci, Piazza Sci 1, I-20126 Milan, Italy
关键词
Genotoxicity; Nanomaterials; Nanoforms; Machine learning; NAMs; Titanium dioxide (TiO2); TIO2; NANOPARTICLES; DNA-DAMAGE; TOXICITY; ANATASE; PROTEINS; ERROR; CELLS;
D O I
10.1016/j.impact.2025.100562
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The genotoxicity of titanium dioxide nanomaterials (TiO2 NMs) remains a debated topic in the scientific community. In this study, we applied the read-across concept based on machine learning (ML) algorithms to predict the genotoxic potential of TiO2NMs. Key objectives included: (i) compiling a systematic dataset capturing DNA damage percentage from in vitro comet assays, (ii) creating a homogenized dataset integrating physicochemical properties, exposure conditions, and experimental details, (iii) training ML models for prediction, (iv) evaluating model performance, and (v) identifying the features that contribute the most to predictive accuracy. The dataset was divided into three parts: the Entire dataset (all features), the Physicochemical dataset, and the Experimental design dataset. Extra Trees Regressor and XGB Regressor demonstrated high predictive accuracy, achieving R2 values of 0.906 and 0.788 for the P-chem and Experimental dataset, respectively. Exposure concentration, cold lysis conditions, and electrophoresis parameters emerged as key predictors of DNA damage, alongside contributions from NM properties. These findings highlight the intricate interplay between NM properties and experimental conditions in genotoxicity assessments. By providing a FAIR dataset, this study facilitates future research, allowing for the integration of additional variables and quality criteria to enhance the modeling approach. This work reinforces the value of nano-informatics in nanosafety and serves as a footing for advancing data-driven hazard assessment methodologies, positioning ML-enabled read-across strategies as a valuable tool for regulatory nanosafety framework.
引用
收藏
页数:19
相关论文
共 93 条
[11]   A methodology for the automatic evaluation of data quality and completeness of nanomaterials for risk assessment purposes [J].
Basei, Gianpietro ;
Rauscher, Hubert ;
Jeliazkova, Nina ;
Hristozov, Danail .
NANOTOXICOLOGY, 2022, 16 (02) :195-216
[12]   Suitability of Nanoparticles to Face Benzo(a)pyrene-Induced Genetic and Chromosomal Damage in M. galloprovincialis. An In Vitro Approach [J].
Bernardeschi, Margherita ;
Guidi, Patrizia ;
Palumbo, Mara ;
Genovese, Massimo ;
Alfe, Michela ;
Gargiulo, Valentina ;
Lucchesi, Paolo ;
Scarcelli, Vittoria ;
Falleni, Alessandra ;
Bergami, Elisa ;
Freyria, Francesca S. ;
Bonelli, Barbara ;
Corsi, Ilaria ;
Frenzilli, Giada .
NANOMATERIALS, 2021, 11 (05)
[13]   FAIRification of nanosafety data to improve applicability of (Q)SAR approaches: A case study on in vitro Comet assay genotoxicity data [J].
Bossa, Cecilia ;
Andreoli, Cristina ;
Bakker, Martine ;
Barone, Flavia ;
De Angelis, Isabella ;
Jeliazkova, Nina ;
Nymark, Penny ;
Battistelli, Chiara Laura .
COMPUTATIONAL TOXICOLOGY, 2021, 20
[14]  
Brandao F., 2020, Genotoxicity of TiO2 Nanoparticles in Four Different Human Cell Lines (A549, HEPG2, A172 and SH-SY5Y), V10, P412
[15]   Genotoxicity of TiO2 Nanoparticles in Four Different Human Cell Lines (A549, HEPG2, A172 and SH-SY5Y) [J].
Brandao, Fatima ;
Fernandez-Bertolez, Natalia ;
Rosario, Fernanda ;
Bessa, Maria Joao ;
Fraga, Sonia ;
Pasaro, Eduardo ;
Teixeira, Joao Paulo ;
Laffon, Blanca ;
Valdiglesias, Vanessa ;
Costa, Carla .
NANOMATERIALS, 2020, 10 (03)
[16]   Opportunities and Challenges for Integrating New In Vitro Methodologies in Hazard Testing and Risk Assessment [J].
Burden, Natalie ;
Clift, Martin J. D. ;
Jenkins, Gareth J. S. ;
Labram, Briony ;
Sewell, Fiona .
SMALL, 2021, 17 (15)
[17]   TiO2 genotoxicity: An update of the results published over the last six years [J].
Carriere, Marie ;
Arnal, Marie-Edith ;
Douki, Thierry .
MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS, 2020, 854
[18]   Assessment of the in vitro genotoxicity of TiO2 nanoparticles in a regulatory context [J].
Charles, Sandrine ;
Jomini, Stephane ;
Fessard, Valerie ;
Bigorgne-Vizade, Emilie ;
Rousselle, Christophe ;
Michel, Cecile .
NANOTOXICOLOGY, 2018, 12 (04) :357-374
[19]   Genotoxicity of titanium dioxide nanoparticles [J].
Chen, Tao ;
Yan, Jian ;
Li, Yan .
JOURNAL OF FOOD AND DRUG ANALYSIS, 2014, 22 (01) :95-104
[20]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794