From literature to predictive modeling: Insights and machine learning applications from in vitro comet assays related to the genotoxicity of titanium dioxide nanomaterials

被引:0
作者
Furxhi, Irini [1 ]
Mirzaei, Mahsa [2 ]
Costa, Anna [1 ]
Bengalli, Rossella [3 ]
机构
[1] CNR, ISSMC Ist Sci & Tecnol Mat Ceram, Via Granarolo 64, I-48018 Faenza, RA, Italy
[2] Univ Coll Dublin, UCD Conway Inst, Sch Biomol & Biomed Sci, Dublin, Ireland
[3] Univ Milano Bicocca, Dept Earth & Environm Sci, Piazza Sci 1, I-20126 Milan, Italy
关键词
Genotoxicity; Nanomaterials; Nanoforms; Machine learning; NAMs; Titanium dioxide (TiO2); TIO2; NANOPARTICLES; DNA-DAMAGE; TOXICITY; ANATASE; PROTEINS; ERROR; CELLS;
D O I
10.1016/j.impact.2025.100562
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The genotoxicity of titanium dioxide nanomaterials (TiO2 NMs) remains a debated topic in the scientific community. In this study, we applied the read-across concept based on machine learning (ML) algorithms to predict the genotoxic potential of TiO2NMs. Key objectives included: (i) compiling a systematic dataset capturing DNA damage percentage from in vitro comet assays, (ii) creating a homogenized dataset integrating physicochemical properties, exposure conditions, and experimental details, (iii) training ML models for prediction, (iv) evaluating model performance, and (v) identifying the features that contribute the most to predictive accuracy. The dataset was divided into three parts: the Entire dataset (all features), the Physicochemical dataset, and the Experimental design dataset. Extra Trees Regressor and XGB Regressor demonstrated high predictive accuracy, achieving R2 values of 0.906 and 0.788 for the P-chem and Experimental dataset, respectively. Exposure concentration, cold lysis conditions, and electrophoresis parameters emerged as key predictors of DNA damage, alongside contributions from NM properties. These findings highlight the intricate interplay between NM properties and experimental conditions in genotoxicity assessments. By providing a FAIR dataset, this study facilitates future research, allowing for the integration of additional variables and quality criteria to enhance the modeling approach. This work reinforces the value of nano-informatics in nanosafety and serves as a footing for advancing data-driven hazard assessment methodologies, positioning ML-enabled read-across strategies as a valuable tool for regulatory nanosafety framework.
引用
收藏
页数:19
相关论文
共 93 条
[1]   Industry's perspective on challenges assessing the in vivo impact of removing titanium dioxide (TiO2) from drug products [J].
Abend, Andreas ;
Sperger, Diana ;
Diaz, Dorys Argelia ;
Guo, Ruiqiong ;
Reul, Regina ;
Wu, Sy-Juen .
JOURNAL OF PHARMACEUTICAL SCIENCES, 2024, 113 (11) :3119-3122
[2]   Exploring Important Factors in Predicting Heart Disease Based on Ensemble-Extra Feature Selection Approach [J].
Abubaker, Howida ;
Muchtar, Farkhana ;
Khairuddin, Alif Ridzuan ;
Nuar, Ahmad Najmi Amerhaider ;
Yunos, Zuriahati Mohd ;
Salimun, Carolyn .
BAGHDAD SCIENCE JOURNAL, 2024, 21 (02) :812-831
[3]  
Additives E., 2021, Safety assessment of titanium dioxide (E171) as a food additive, V19
[4]   Comparing Lipid Membranes in Different Environments [J].
Akabori, Kiyotaka ;
Nagle, John F. .
ACS NANO, 2014, 8 (04) :3123-3127
[5]   Regulatory landscape of nanotechnology and nanoplastics from a global perspective [J].
Allan, Jacqueline ;
Belz, Susanne ;
Hoeveler, Arnd ;
Hugas, Marta ;
Okuda, Haruhiro ;
Patri, Anil ;
Rauscher, Hubert ;
Silva, Primal ;
Slikker, William ;
Sokull-Kluettgen, Birgit ;
Tong, Weida ;
Anklam, Elke .
REGULATORY TOXICOLOGY AND PHARMACOLOGY, 2021, 122
[6]   Critical issues in genotoxicity assessment of TiO2 nanoparticles by human peripheral blood mononuclear cells [J].
Andreoli, Cristina ;
Leter, Giorgio ;
De Berardis, Barbara ;
Degan, Paolo ;
De Angelis, Isabella ;
Pacchierotti, Francesca ;
Crebelli, Riccardo ;
Barone, Flavia ;
Zijno, Andrea .
JOURNAL OF APPLIED TOXICOLOGY, 2018, 38 (12) :1471-1482
[7]  
[Anonymous], 2016, 476 OECD, DOI [10.1787/9789264264809-en, DOI 10.1787/9789264264809-EN]
[8]  
[Anonymous], **DATA OBJECT**, DOI 10.5281/zenodo.15057424
[9]   Long-term exposure of A549 cells to titanium dioxide nanoparticles induces DNA damage and sensitizes cells towards genotoxic agents [J].
Armand, Lucie ;
Tarantini, Adeline ;
Beal, David ;
Biola-Clier, Mathilde ;
Bobyk, Laure ;
Sorieul, Sephanie ;
Pernet-Gallay, Karin ;
Marie-Desvergne, Caroline ;
Lynch, Iseult ;
Herlin-Boime, Nathalie ;
Carriere, Marie .
NANOTOXICOLOGY, 2016, 10 (07) :913-923
[10]   The use of the comet assay for the evaluation of the genotoxicity of nanomaterials [J].
Azqueta, Amaya ;
Dusinska, Maria .
FRONTIERS IN GENETICS, 2015, 6